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Abstract

Abstract

Most optimization algorithms depend on the derivative information of the problem.
However, in the real world, the derivative information of objective functions in many
practical problems in engineering computations, design optimization, data science, ar-
tificial intelligence, and other fields is either unavailable or prohibitively expensive. In
these application scenarios, it is difficult for us to obtain and utilize precise derivative in-
formation of the problem. Thismotivates us to study derivative-free optimization (DFO)
methods. Derivative-free optimization is one of the most important and challenging
areas in scientific computing and engineering, with significant research demands and
potential.

The trust-region methods based on the under-determined interpolation quadratic
models is an efficient class of derivative-free optimization methods. Updating the
quadratic model using different techniques will derive different models. This thesis
proposes a new method to update the quadratic model, which is achieved by minimiz-
ing the 𝐻2 norm of the change between neighboring quadratic models. We give the
motivation for applying the 𝐻2 norm and the theoretical properties of the proposed new
updating method. Such a model is determined by calculating the coefficients using the
KKT conditions. Numerical results show our new model’s numerical advantages in
solving the considered test set. We also propose the least weighted 𝐻2 norm updating
quadratic model and discuss the best weight coefficients. This thesis gives a new per-
spective based on the property of trust-region iteration to analyze the famous least norm
type under-determined quadratic interpolation model. We find the non-determinacy of a
coefficient in the optimality condition when constructing a quadratic model considering
the trust-region iteration in some cases. The consequent non-uniqueness of the quadratic
model leads us to propose a new model to improve the model. In detail, we selectively
treat the previous under-determined quadratic model as a quadratic model or a linear
model. We give an improved under-determined quadratic interpolation model, and it
considers the optimality of the model based on the trust-region iteration. We conse-
quently give a new derivative-free method. This thesis gives the theoretical motivation,
analysis, and computational details. Our quadratic model’s formula is implementation-
friendly. The numerical results show the advantages of using our quadratic model in
the derivative-free optimization methods. To the best of our knowledge, we provide the
first work considering the property of trust-region iteration and the model’s optimality
when constructing the under-determined quadratic model for derivative-free methods.
In addition, we give the conditions of distance reduction between the minimizers of
non-convex quadratic functions in the trust region and the corresponding numerical ex-
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amples.
This thesis proposes derivative-free optimization with transformed objective func-

tions (DFOTO) and gives a model-based trust-region method with the least Frobenius
norm updating quadratic model. The model updating formula is based on Powell’s for-
mula, and it can be easily implemented. Our method has the same framework as the
methods for solving problems without transformations, and its query scheme is also
given. We propose the definitions related to optimality-preserving transformations to
understand the interpolation model in our method when minimizing transformed objec-
tive functions. We prove the existence of model optimality-preserving transformations
beyond translation transformations. We give the corresponding necessary and sufficient
condition. We also analyze the corresponding model and its interpolation error when
the objective function is affinely transformed. The convergence property of a provable
algorithmic framework related to the transformed objective functions is given in this the-
sis. Numerical results show that our method can successfully solve most test problems
with objective optimality-preserving transformations. To the best of our knowledge,
this is the first work providing the model-based derivative-free algorithm and analysis
for transformed problems with the function evaluation oracle.

In addition, we propose a novel method named 2D-MoSub. It is a 2-dimensional
model-based subspace derivative-free method. 2D-MoSub especially aims to solve
large-scale derivative-free problems. 2D-MoSub combines 2-dimensional quadratic
interpolation models and trust-region techniques to iteratively update the points and
explore the 2-dimensional subspace. We introduce its framework and computational
details, including initialization, the interpolation set, the quadratic interpolation model,
trust-region trial steps, and the updating of trust-region radius and subspace. We dis-
cuss the poisedness and quality of the interpolation set in the corresponding subspace
and analyze some properties of our method, which include the model’s approximation
error, projection property and 2D-MoSub’s convergence. Numerical results show the
advantage of 2D-MoSub. Besides, this thesis proposes the derivative-free optimization
algorithm SUSD-TR. The speeding-up and slowing-down (SUSD) direction is proved
to converge to the gradient descent direction in some cases. Our SUSD-TR combines
the SUSD direction based on the covariance matrix of interpolation points and the so-
lution of the trust-region subproblem of the interpolation model function based on such
points. We analyze the dynamics of the optimization process and the direction’s proper-
ties of the algorithm SUSD-TR. We discuss the trial step and structure step. Numerical
results show the advantage of SUSD-TR.

KeyWords: derivative-free optimization, trust-region method, quadratic interpolation,
large-scale problem, subspace method
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Chapter 1 Introduction

Chapter 1 Introduction

In the fields of science and engineering, optimization problems have always been a
highly concerned and crucial research area. Whether in industrial production, logis-
tics and transportation, financial investment, or artificial intelligence, solving optimiza-
tion problems can directly affect the efficiency and performance of systems [1–8]. By
solving optimization problems, we can achieve optimal utilization of resources, reduce
costs, improve product quality, and even optimize decision-making processes.

Optimization problems in practical applications often exhibit complex characteris-
tics [9–19], including nonlinearity, nonconvexity, and multivariable dependence. These
features make the solution of optimization problemsmore difficult and complicated. For
example, in engineering design, we often need to consider various physical constraints
as well as the nonlinear behavior of the system; in the financial field, investment opti-
mization problems often involve nonlinear relationships between the returns and risks
of multiple assets; in the medical field, drug formulation optimization problems may
involve interactions among multiple drug components and their effects on the patient’
s physiological state. Such complexities motivate us to search for more flexible and
efficient numerical algorithms to solve these nonlinear optimization problems.

This dissertation focuses on the solution of unconstrained problems, considering that
such problems not only have wide applications themselves but also that the correspond-
ing methods and ideas can be extended to constrained problems. At the same time,
some constrained problems can be transformed into unconstrained problems. There-
fore, the unconstrained optimization methods discussed in this dissertation are funda-
mental to optimization methods. Most unconstrained optimization methods require the
derivatives of the objective function. However, in some practical cases, the objective
function is costly to evaluate, and its derivatives are unavailable. A typical example is
when the objective function is not expressed analytically but obtained through a “black
box,” such as a chemical process or computer simulation. The optimization of such
problems does not use the derivatives of the objective function and is therefore called
derivative-free optimization. That is, derivative-free optimization methods are a class
of numerical methods that do not require the first- or higher-order derivatives of the ob-
jective function. For more introductions to derivative-free optimization, one can refer
to the monograph by Conn, Scheinberg, and Vicente [20], as well as the monograph by
Audet and Hare [21].

As the introduction, this chapter mainly presents the research background, objec-
tives, and organizational structure of this dissertation. First, in Section 1.1, we dis-
cuss the importance and application fields of derivative-free optimization. Section 1.1.1
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examines specific applications of derivative-free optimization. Section 1.1.2 provides
a classification and overview of derivative-free optimization methods. Subsequently,
Section 1.2 gives a detailed introduction to model-based derivative-free optimization
methods, which are the focus of this dissertation. In Section 1.2.1 and Section 1.2.2, we
present the relevant algorithms and the fundamental concepts of interpolation models.
Section 1.3 mainly introduces evaluation methods for derivative-free optimization algo-
rithms, where we provide criteria and schemes for assessing their performance. Finally,
Section 1.4 summarizes the main content and organizational structure of the disserta-
tion.

1.1 Derivative-Free Optimization

This dissertation considers and studies unconstrained derivative-free optimization prob-
lems

min
𝒙∈ℜ𝑛

𝑓(𝒙), (1-1)

where 𝑓 is a real-valued function with no available first- or higher-order derivative in-
formation. We know that derivative-free optimization methods are a class of numerical
methods that do not use the true or exact derivative information of the objective func-
tion in the optimization process. Since only function values are required, derivative-
free optimization methods have wide applications. At the same time, due to the lack
of derivative information, derivative-free methods have some disadvantages. For exam-
ple, it is difficult to obtain a good approximation of the original objective function in the
optimization problem, and we can hardly capture the shape of the black-box function
accurately. In the discussion of this dissertation, we assume that it is difficult to obtain a
perfectly accurate approximation of the objective function or its derivatives. Note that,
for this reason, the theoretical properties of derivative-free optimization methods are
usually hard to analyze.

1.1.1 Applications of Derivative-Free Optimization

Derivative-free optimization problems are very common in practical applications, and
they are widely used in engineering. In the early stage of optimization algorithm devel-
opment, although derivative information of nonlinear optimization problemswas known
in some contexts, the corresponding theoretical framework was not yet mature, and ef-
fective derivative-based methods were lacking. In such cases, many derivative-free op-
timization methods were favored by users at that time because of their simplicity and
ease of use. With the rapid development of scientific computing technology and the in-
creasing scale and complexity of problems, the original derivative-free methods began
to show limitations in solving problems, which promoted the continuous development
and refinement of more complex derivative-based methods. These methods usually re-

2



Chapter 1 Introduction

quire users to provide derivative information of the objective function. However, this is
not always feasible, because the required function values in many practical engineering
scenarios may come from measurements in physical, biological, or computer experi-
ments. Such processes for obtaining function values can only be regarded as a black-box
system.

Some application examples of derivative-free optimization include parameter tuning
of numerical algorithms [22], optimization of neural networks [23], automatic error
analysis [24], dynamic pricing [25], and optimal design in engineering design [26].

It is worth noting that derivative-free optimization methods have been widely ap-
plied in industry and engineering [27–29], especially playing an important role in solv-
ing problems involving complex models or experiments. These problems come from
various fields, such as wing design [30], aerodynamic shape design [31, 32], fluid dy-
namics design [33], and circuit design [34, 35]. Any optimization problem that requires
optimizing complex models, simulations, or experiments may involve derivative-free
optimization. Notably, in industry, multidisciplinary design optimization [36] is a well-
known specific application of derivative-free optimization. Since multidisciplinary de-
sign optimization problems usually involve simulations or experiments in industrial
production, derivative-free optimization methods are often required to solve the cor-
responding black-box problems [37].

Many derivative-free optimization and black-box optimization problems related to
data science and machine learning have also emerged [38, 39]. For example, black-box
attacks on neural networks [40] can be regarded as solving a derivative-free optimiza-
tion problem. In most cases, hyperparameter tuning is also a black-box problem [22].
For instance, using derivative-free optimization methods to improve parameter selec-
tion in climate modeling [41]. Below, we introduce some specific application cases of
derivative-free optimization in detail.

Example 1.1 (Parameter Optimization). Optimizing parameters in numerical algorithms
is a very meaningful research direction [22]. We know that most numerical algorithms
depend on a set of pre-specified parameters. At the same time, these parameters may
be recommended values provided based on the experience of algorithm developers, or
they may need to be set by the users through trial and error. The selection of these
parameters has a significant impact on the performance of the algorithm. An effec-
tive parameter selection method is to obtain good parameters by solving a black-box
optimization problem. We consider treating the parameters as variables, with the per-
formance of the algorithm on the test set (for example, evaluated by CPU running time
or number of iterations) as the objective function. Usually, these parameters are sub-
ject to lower and upper bound constraints. Therefore, the optimization problem can be

3



Algorithms and Theory of Derivative-Free Optimization

simply formulated as
min

𝒑∈ℜ𝑛
𝑓(𝒑) = Performance(𝒑)

s. t. 𝑙𝑖 ≤ 𝒑𝑖 ≤ 𝑢𝑖, ∀ 𝑖 = 1, ⋯ , 𝑛,
where 𝒑 denotes the parameters to be tuned, and 𝒑𝑖 denotes its elements. Note that the
objective function of such problems usually cannot be expressed analytically or have
derivatives computed [42].

Example 1.2 (Climate Modeling and Prediction). Global climate numerical models are
generally extremely complex computer programs, constructed from complicated code,
essentially a black box, whose purpose is tomodel and predict the Earth’s climate change
by simulating the complex interactions among the ocean, atmosphere, and land. These
models combine numerous input variables, such as the concentration of greenhouse
gases in the atmosphere, solar radiation, ocean circulation, and surface cover types,
to simulate, model, and predict the behavior of the Earth’s climate system. Because
global climate models must process massive amounts of data with many variables, they
need to run on high-performance computers, which further increases research cost and
complexity. At the same time, these models cover long and complex time spans. In
summary, parameter selection in such models can be regarded as an expensive black-
box optimization problem [41].

Example 1.3 (Black-Box Attacks). In the research and application of artificial intelli-
gence, a black-box attack is a behavior aimed at undermining neural network recognition
systems. Its core strategy is to add noise to the input data of a neural network to mislead
it into producing incorrect outputs. For example, an attacker may introduce subtle per-
turbations into image data. Although these perturbations are almost imperceptible to the
human eye, they can cause the neural network to make incorrect recognition decisions.
For instance, by adding carefully designed noise to a picture of a panda, an attacker can
trick the neural network into misclassifying it as a gibbon. The particularly challenging
aspect of such attacks is that attackers usually do not have access to the internal struc-
ture and mechanisms of the corresponding neural network, that is, they are in a so-called
black-box environment. In other words, the attacker must find noise that can effectively
interfere with the network’s output without any knowledge of its internal parameters
or architecture. This essentially transforms the problem into a black-box optimization
problem [40].

Example 1.4 (Molecular Geometry). In scientific research in chemistry and physics,
one striking application area is the optimization of molecular geometry. When we con-
sider amolecule or atomic cluster containingmultiple atoms, its geometric configuration
can be described by certain degrees of freedom or variables. Specifically, our goal is to
find a good geometric configuration such that the potential energy of the entire molecule
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or cluster is minimized, i.e., achieving the lowest possible energy. Although gradients
for such optimization problems can sometimes be obtained, computing them may be
costly and noisy. In such cases, derivative-free optimization methods, especially direct
search strategies, have proven to be effective tools [43, 44].

In addition, there are also some optimal strategy problems that fall under derivative-
free optimization. For example, Wild and Shoemaker described the problem of deter-
mining the best pumping strategy to reduce harmful contaminants in groundwater. Sim-
ply put, the problem involves a set of wells operating at certain pumping rates, which
can inject clean water or remove and treat contaminated water. Suppose we want to
explore: for 15 wells operating for more than 30 years, what is the optimal, lowest-cost
pumping strategy to ensure that the concentration of harmful substances in the aquifer
meets environmental standards. Here, a single evaluation (under the conditions at that
time) requires more than 45 minutes of groundwater flow simulation. Moreover, the
simulation code is too complex to obtain automatic differentiation. This is a typical
black-box derivative-free optimization problem [45].

1.1.2 Classification and Overview of Derivative-Free Optimization Methods

Derivative-free methods, with a long research history, have different types: for example,
direct search methods, line search methods, model-based methods, heuristic algorithms,
and so on. In this section, we provide a brief introduction. The articles by Ding [42]
and Zhang [46] also contain detailed introductions, and we refer to their summaries and
discussions here.
Direct Search Methods

Direct search methods are a large class of derivative-free methods [47–49], which
mainly construct certain geometric structures to search within the feasible region of
variables. In general, direct search methods neither use derivative values of the orig-
inal objective function nor use approximate derivative information obtained by finite
differences. These methods mainly rely on low-dimensional geometric intuition and
lack rich, rigorous mathematical theory. Historically, the term “direct search” was first
proposed by Hooke and Jeeves in 1961. In their study, one core feature of direct search
was that it only required comparing the relative magnitudes of function values at trial
points, without depending on their specific values. In other words, any decrease in the
objective function value would be accepted. Clearly, this makes the method relatively
simple and intuitive.

Specifically, direct search methods include pattern search methods, simplex meth-
ods, directional direct search methods, and mesh adaptive direct search methods. Some
examples are the Hooke–Jeeves method [50], the Nelder–Mead method [51], improved
simplexmethods [52], and generating set searchmethods [49]. The pattern searchmeth-
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ods mentioned here are one type of direct search method [46], including the Fermi–
Metropolis method [53], the Evolutionary Operation method [54], the Hooke–Jeeves
method [50], multidirectional search methods [55–57], generalized pattern search meth-
ods [58–62], asynchronous parallel pattern search methods [63, 64], and mesh adaptive
direct search (MADS) methods [65, 66]. In fact, direct search in the modern sense can
at least be traced back to the research report of Fermi and Metropolis [53].

To give an intuitive description, minimizing a bivariate function can be likened to
starting from a point on a mountain and searching for the lowest altitude. One can imag-
ine that a basic approach is to find a valley and move forward along it. The main idea
of pattern search methods is to use exploratory steps to obtain information for finding
valleys, and then use pattern steps to advance along the valley [67].

In addition, simplex methods [20] are also a class of direct search methods. The
Nelder–Mead simplex method [51] is a representative of this class [46]. This method
has been widely used in practice. Briefly, for an 𝑛-dimensional problem, the Nelder–
Mead method starts from a simplex formed by 𝑛 + 1 initial points and iterates by re-
flecting, expanding, and contracting the simplex according to the function values at its
vertices. The basic principle of the algorithm is that the simplex iteratively approximates
the shape of the objective function locally [51], eventually converging successfully. Un-
fortunately, the Nelder–Mead method does not have a solid convergence theory (even
for strictly convex functions [68]). In addition, scholars have proposed modifications
and improvements to the Nelder–Mead method [69–71].

Here, we give another example of a specific direct search algorithm: directional di-
rect search methods. Briefly, at each iteration, a finite set of points is generated near the
current point 𝒙𝑘. These candidate points are generated by moving from 𝒙𝑘 in directions
𝛼𝑘𝒅, where 𝛼𝑘 is a positive step length and the direction 𝒅 is chosen from a finite set
of directions corresponding to the current step. Then the method evaluates the objec-
tive function at all or some of these candidate points, and sets 𝒙𝑘+1 as a point that may
decrease the function value and possibly increase the step length. Note that if the algo-
rithm finds that none of the candidate points provide sufficient decrease, then 𝒙𝑘+1 is
set to 𝒙𝑘 and the step length is reduced. Kolda et al. [49] proposed the term “generating
set search methods” to define this class.

It is worth noting that during the study of direct search algorithms, scholars gradu-
ally established and developed systematic theoretical foundations for the mathematical
concept of positive bases [20, 21].
Line Search Methods

Another class of derivative-free methods are line search methods that do not use
derivative information of the original objective function. Scholars observed that direct
search methods rely on comparing function values at grid points or simplex vertices
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without considering properties such as continuity and smoothness, which leads to slow
convergence. When one-dimensional search techniques were introduced, the efficiency
of these methods was significantly improved [42]. Specifically, the classical and ba-
sic line search framework for solving the unconstrained optimization problem (1-1) is
shown in Algorithm 1 [46]. Depending on the choice of search directions, there are
generally three types of line search methods: alternating direction methods (e.g., the
Rosenbrock method [72] and its improved versions [73]), conjugate direction methods
[74, 75], and approximate gradient-based methods (e.g., finite-difference quasi-Newton
methods [76–78]). In addition, there are some methods based on stochastic gradient ap-
proximations [79–83]. In general, once a search direction is given, an appropriate step
length can be chosen using methods such as interval division [2, 84].

Algorithm 1 Framework of Line Search Methods
Step 1. (Initialization) Obtain the initial point 𝒙1, and let 𝑘 = 1.
Step 2. (Choose search direction) Select the search direction 𝒅𝑘.
Step 3. (Choose step length) Solve

min
𝛼≥0

𝑓(𝒙𝑘 + 𝛼𝒅𝑘),

to obtain the step length 𝛼𝑘.
Step 4. (Update) Let 𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘, set 𝑘 = 𝑘 + 1, and go to Step 2.

As a class of derivative-free line search methods, the basic principle of coordinate
rotation methods is to use each coordinate direction in turn as the search direction. One
drawback is that zigzagging may occur. A way to overcome this difficulty is to introduce
the pattern search of Hooke and Jeeves [50]. Note that a simple extension of coordinate
rotation is to extend coordinate directions to any orthogonal basis. The Rosenbrock
method [72], also called the rotating axes method, uses a similar idea. Yuan Yaxiang’s
monograph [2] presents results on the convergence of alternating direction methods.

In addition, conjugate direction methods iteratively generate conjugate directions as
search directions during the solution process. The earliest conjugate direction method
was proposed by Smith [74]. Powell [75] and Zagwill [85] also studied conjugate di-
rection methods.

The idea of gradient-approximation-based line search methods is to obtain numeri-
cal approximate gradients in some way, and to build algorithmic frameworks analogous
to classical derivative-basedmethods. One of the simplest andmost direct approaches to
approximate gradients is finite differences. The difference quasi-Newton method [76]
is a quasi-Newton method based on finite-difference approximations. Gill and Mur-
ray [77] studied Broyden family methods based on finite differences. Implicit filtering
methods [86–88] can be regarded as quasi-Newton methods based on simplex gradients.
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In addition, there are derivative-free quasi-Newton methods [89, 90], which formulate
quasi-Newton conditions based only on function values, where the gradient and Hes-
sian satisfy certain variational minimal properties [46]. In recent years, research and
methods on stochastic gradient approximations [79–83] have also matured, including
single-point stochastic gradient approximation, two-point stochastic approximation, and
multi-point stochastic approximation.
Model-Based Methods

Model-based methods are an important class of derivative-free methods. Specifi-
cally, quadratic interpolation model methods, underdetermined quadratic interpolation
model methods, and regression model methods all use polynomial models [91–99]. An-
other type of model-based derivative-free method is based on radial basis function inter-
polation models [100, 101]. In fact, there are also some hybrid model-based methods,
such as those combining trust-region methods and line search methods [102]. Scholars
have also discussed probabilistic model-based trust-regionmethods [103, 104]. Model-
based derivative-free optimizationmethods are the focus of this dissertation, andwewill
provide a detailed discussion in Section 1.2.
Heuristic Algorithms

In fact, most modern heuristic algorithms also do not use derivative information.
Simulated annealing algorithms [105] and genetic algorithms [21] belong to this class
[42].

Genetic algorithms are derived from the principles of natural selection and genetics.
This algorithmwas first proposed byHolland in 1975 [106–108]. It is a search technique
that simulates the principle of “survival of the fittest” and the random gene exchange
mechanism in biological evolution. The method imitates and refers to the laws of bi-
ological evolution and heredity. After encoding, the algorithm starts from an initial
population (initial feasible solutions) and iteratively applies reproduction, crossover,
and mutation. By repeatedly applying these operations across generations, the algo-
rithm eliminates inferior solutions and cultivates new solutions, eventually finding the
optimal solution. Its core idea is to use the “survival of the fittest” rule to eliminate
poor solutions and breed new ones for the optimization problem. To remain consistent
with biological terminology, search points are usually called individuals, collections of
points form populations, information within a point is encoded as a chromosome, and
new search points are obtained by using processes analogous to biological operations
[21].

Simulated annealing algorithms are search algorithms developed from metal heat
treatment. In 1983, Kirkpatrick et al. [109, 110] applied this idea to solve optimization
problems. Its basic idea is to treat an optimization problem as analogous to a metallic
object, where the objective function, the solutions, and the optimal solution correspond
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to the energy of the object, its state, and the lowest-energy state, respectively. Then the
annealing process of the metallic object is simulated: starting from a sufficiently high
temperature and gradually lowering the temperature, so that the molecules of the object
reach the ideal state of minimum energy, thereby finding the solution of the optimization
problem.
Other Methods and Some Numerical Software

Derivative-freemethods also include hybridmethods, such as implicit filteringmeth-
ods [87, 88] and adaptive regularization methods [111]. Below we briefly introduce one
hybrid method.

Implicit filtering is a class of hybrid methods that can be understood as a mixture of
grid search algorithms and local quasi-Newton optimization methods, where the corre-
sponding finite-difference parameters are adjusted adaptively.

In addition, evolutionary algorithms [112] form a large class of methods, many of
which do not require derivative information of the objective function. The covariance
matrix adaptation evolution strategy (CMA-ES) [113–115] is one such evolutionary
strategy algorithm. Briefly, it samples from a Gaussian distribution in the solution space
of the optimization problem, and updates the Gaussian distribution according to a cer-
tain sample selection mechanism. By iteratively repeating the sampling and updating
process, this method eventually finds a satisfactory solution.

Inspired by the behavior of fish schools searching for darker regions in their environ-
ment, a distributed source-seeking strategy has recently emerged. This strategy gener-
ates a speeding-up slowing-down (SUSD) behavior [116, 117], which is very similar to
the behavior observed in fish schools. This strategy can be regarded as a particle swarm
(bio-inspired) optimization algorithm, allowing each search point to measure the field
value (corresponding to the objective function value in the optimization setting) in real
time, and collectively move toward an approximate negative gradient direction. Here,
the movement speed of each search point is designed to be proportional to its field mea-
surement. This method will also be introduced and improved later in the dissertation.

There also exist derivative-free methods for special problems, such as methods for
least-squares problems [118, 119], derivative-free methods for composite optimiza-
tion [120, 121], and examples with special constraints, such as ellipsoidal-constrained
derivative-free optimization [122] and distributed derivative-free optimization [123].
There are also other types of derivative-free optimization methods, such as Bayesian
optimization methods [124], methods using stochastic techniques [103, 125, 126], and
global optimization [127]. In addition to the monographs of Conn, Scheinberg, and
Vicente [20] and Audet and Hare [21], some survey papers, such as those by Larson,
Menickelly, and Wild [128], Zhang [129], and Rios and Sahinidis [130], also provide
detailed introductions to various types of derivative-free optimization methods.
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In addition, researchers have developed software and solvers for derivative-free op-
timization methods. Examples include CMA-ES [131], DFO [132], IMFIL [133], and
SOLNP+ [134]. Powell developed a series of algorithms including TOLMIN [135],
COBYLA [136], UOBYQA [137], NEWUOA [94], BOBYQA [138], and LINCOA
[139]. In addition, there are DFO-LS [140] and DFBGN [141]. Recently, Ragonneau
and Zhang developed PDFO, which provides a cross-platform interface for Powell’s
derivative-free solvers [142], and they also developed the COBYQA [143] algorithm.
We developed MATLAB implementations [144, 145] and Python implementations of
the NEWUOA and BOBYQA algorithms. In addition, Zhang’s PRIMA [146] provides
a modernized and improved reference implementation of Powell’s methods.

1.2 Model-Based Derivative-Free Optimization Methods

1.2.1 Algorithms

Herewe specifically introducemodel-based derivative-free optimizationmethods. Model-
based methods are a classical and efficient class of derivative-free methods. The ap-
proaches to obtaining polynomial models include linear interpolation [147], quadratic
interpolation [91, 148], underdetermined quadratic interpolation [92], and regression
[20]. Radial basis function interpolation [100] is another choice for constructing the
employed model. At the same time, random models can also be used in trust-region
methods [103, 104]. In addition, there are model-based methods designed for noisy
problems [149], methods for minimizing transformed objective functions [150], and
approaches using cubic models [151].

The main idea of model-based derivative-free optimization methods is to construct a
model function to locally approximate the original black-box objective function at each
iteration. Then the algorithm uses the information of the model function (including
gradient) to gradually obtain iterates. Most model-based methods adopt a trust-region
framework [152], generating new iterates by minimizing a quadratic model within a
region around the current or best iterate (usually centered there), as shown in (1-2). For
derivative-free cases, the corresponding model is usually constructed via interpolation
of function values at interpolation points (polynomial interpolation). Such methods are
called model-based (interpolation) derivative-free trust-region methods.

Specifically, quadratic interpolation model methods [91], underdetermined
quadratic interpolation model methods [92, 93, 97, 102, 150, 153, 154] and regres-
sion model methods [95, 96] all use approximation models. The algorithms UOBYQA
[137] and CONDOR [155] employ quadratic models. AlgorithmsNEWUOA [94], DFO
[156], and MNH [157] are examples of methods using underdetermined quadratic in-
terpolation models. Another type of model-based derivative-free method is the radial
basis function interpolation model method [100], with BOOSTERS [158] and ORBIT
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[101] being examples of such algorithms. There are also wedge trust-region methods
[159], related methods for least squares problems (including algorithms DFBGN [141]
and DFO-LS [140]), as well as algorithms using sparse models [153]. This dissertation
will focus on the interpolation step of model-based derivative-free trust-regionmethods.
The framework of a model-based derivative-free trust-region algorithm is shown in Al-
gorithm 2. The basic convergence of derivative-free trust-region algorithms [96, 160] as
well as improvements in flexibility and robustness [140] have been studied. Discussions
on solving the quadratic model trust-region subproblem (1-2) can be found in Chapter
7 of the book by Conn, Gould, and Toint [152]. One of the common methods for solv-
ing the trust-region subproblem of a model function is the truncated conjugate gradient
method [161–163].

Algorithm 2 Framework of a model-based derivative-free trust-region algorithm
Input: black-box objective function 𝑓 and initial point 𝒙int.
Output: minimizer 𝒙∗ and minimal function value.
Obtain/set the initial trust-region radius Δ0 and other initial parameters.
Step 1. (Manage interpolation set)
Select an interpolation set 𝒳𝑘 ⊂ ℜ𝑛. Most points in 𝒳𝑘 have already been evaluated
in previous iterations. Here, the algorithm evaluates all 𝒚 ∈ 𝒳𝑘 whose function values
are not yet known, obtaining 𝑓(𝒚).
Step 2. (Construct interpolation model)
Use a linear or quadratic interpolation model function (or radial basis function inter-
polation model) 𝑄𝑘 to approximate 𝑓 .
Step 3. (Trust-region iteration)
Obtain 𝒙+

𝑘 and function value 𝑓(𝒙+
𝑘 ) by solving

min
𝒙

𝑄𝑘(𝒙)

s. t. ‖𝒙 − 𝒙𝑘‖2 ≤ Δ𝑘
(1-2)

and update 𝒙𝑘+1 and Δ𝑘+1 accordingly. Specifically, by evaluating the function value
at the new point and comparing the actual reduction of the objectivewith the predicted
reduction of the model, the algorithm determines whether the iteration is successful,
and updates the iterate and the trust region.
If the termination condition is not satisfied, set 𝑘 = 𝑘 + 1, go to Step 1.

In fact, constructing a good local approximation model for trust-region methods,
with or without derivative information of the objective function, is very important. In
derivative-free optimization, the most common approach to obtain a model is to deter-
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mine model 𝑄 based on interpolation of sampled function values, with the form

𝑄(𝒙) = 1
2 (𝒙 − 𝒙0)

⊤ 𝑯 (𝒙 − 𝒙0) + 𝒈⊤ (𝒙 − 𝒙0) + 𝑐,

where 𝒙0 is a given vector, symmetric matrix 𝑯 ∈ ℜ𝑛×𝑛, 𝒈 ∈ ℜ𝑛 and 𝑐 ∈ ℜ together
contain 1

2(𝑛 + 1)(𝑛 + 2) unknown coefficients to be determined. A quadratic function
selected from the set of quadratics that satisfies the function value constraints

𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘 (1-3)

is denoted as 𝑄, where 𝒳𝑘 denotes the interpolation set at the 𝑘-th iteration (also called
interpolation set or interpolation points set). We assume the 𝑚 interpolation points in
𝒳𝑘 are 𝒚1, … , 𝒚𝑚.

In this dissertation, a determined quadratic model [20] refers to the case where all
1
2(𝑛 + 1)(𝑛 + 2) independent parameters can be uniquely determined by the interpolation
conditions (1-3). An underdetermined quadratic model (Chapter 5 of the book by Conn,
Scheinberg, and Vicente [20]) refers to the case where after satisfying the interpolation
conditions (1-3), the quadratic function still has remaining degrees of freedom, since
𝑚 < 1

2(𝑛 + 1)(𝑛 + 2). In other words, an underdetermined quadratic model cannot be
uniquely determined solely by the function value constraints (1-3). In derivative-free
optimization, underdetermined quadratic models are one of the most important types of
quadratic models used in trust-region algorithms.

It should be pointed out that, for the purpose of saving function evaluation costs
when solving the algorithm, in interpolation-based methods, after the 𝑘-th iteration is
completed, the points in the interpolation set 𝒳𝑘 are usually not completely discarded.
Most of them are inherited by 𝒳𝑘+1. At the same time, in the vast majority of cases,
the newly obtained iterate is also added into 𝒳𝑘+1, unless doing so would seriously
affect the well-poisedness of 𝒳𝑘+1

1. Considering that interpolation accuracy is usually
good locally, the underdetermined quadratic models we wish to explore are often more
suitable to represent the local properties of the objective function rather than its global
properties, and are thus often used in trust-region frameworks.

There are three main reasons to consider using underdetermined quadratic interpo-
lation functions within a trust-region framework. First, quadratic model functions can
capture and describe the curvature information of the objective function locally. Sec-
ond, using fewer interpolation points can reduce the number of function evaluations.
Last but not least, the samples/interpolation points need to be reasonably close to the
current iterate. However, quadratic models require 𝒪(𝑛2) interpolation points. As a re-
sult, in many cases, the number of useful interpolation points is fewer or much fewer
than the number of elements in the polynomial basis.

1An introduction will be given later.
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Note that, as mentioned earlier, the coefficients of the quadratic model function 𝑄𝑘
are the symmetric Hessian matrix ∇2𝑄𝑘, the gradient vector ∇𝑄𝑘, and a constant term.
Their total degrees of freedom are 1

2(𝑛 + 1)(𝑛 + 2), i.e., 𝒪(𝑛2). When the dimension 𝑛 of
the problem is large, if we directly determine the coefficients of the model function 𝑄𝑘
by solving the interpolation equations (1-3), the number of function evaluations will be
very large. To reduce the number of function evaluations, we can use fewer interpolation
points to construct the quadratic model function. To uniquely determine the coefficients
of 𝑄𝑘, Powell [94] suggested taking the solution of the subproblem

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹

s. t. 𝑄(𝒚) = 𝑓(𝒚), ∀ 𝒚 ∈ 𝒳𝑘

(1-4)

as the desired quadratic model 𝑄𝑘, where the notation ‖⋅‖𝐹 denotes the Frobenius norm,
i.e., for a given matrix 𝑪 ∈ ℜ𝑛×𝑛, its Frobenius norm is defined as ‖𝑪‖𝐹 = (∑𝑖,𝑗 𝑐2

𝑖𝑗)
1
2 ,

where 𝑐𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, are the elements of matrix 𝑪 . Note that here 𝒳𝑘 denotes the
interpolation set at the 𝑘-th iteration, and 𝒬 denotes the set of quadratic functions2. In
other words, the quadratic model function 𝑄𝑘 obtained in this way satisfies: among all
quadratic functions satisfying the interpolation conditions 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), 𝑖 = 1, ⋯ , 𝑚,
the corresponding ∇2𝑄𝑘 − ∇2𝑄𝑘−1 has the smallest Frobenius norm, where 𝒚1, ⋯ , 𝒚𝑚
denote the current interpolation points, and 𝑚 < 1

2(𝑛 + 1)(𝑛 + 2).
According to the convexity of the Frobenius norm, it can be proved that in the 𝑘-

th iteration, the quadratic model 𝑄𝑘 can be uniquely determined. This type of model
has the advantage of possessing a projection property when the {objective function is
quadratic} [93], i.e.,

‖∇2𝑄𝑘 − ∇2𝑓‖𝐹 ≤ ‖∇2𝑄𝑘−1 − ∇2𝑓‖𝐹

holds for such 𝑄𝑘 and any {quadratic function} 𝑓 .
If in (1-4), ∇2𝑄𝑘−1 is replaced by the zero matrix, this corresponds to the minimum

Frobenius norm quadratic model [156, 157].

1.2.2 Related Concepts of Interpolation Models

As mentioned earlier, interpolation models are very important for model-based trust-
region derivative-free optimization algorithms, and the interpolation set that provides
interpolation conditions is also crucial for constructing interpolation models. We now
introduce the relevant concepts of interpolation models and interpolation sets. The first
thing to introduce is how we should define a measure of poisedness for an interpolation
point set. In fact, given an interpolation set 𝒳 , a good poisedness measure should reflect

2We use the term “quadratic function” to refer to polynomials of nonnegative integer degree no greater than 2.
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how the set “covers” the region of interest for interpolation. For example, in the linear
case, a “good coverage” usually means that the points in 𝒳 are affinely independent.

Clearly, such a metric will depend on 𝒳 itself and on the region considered. For
example, in the case of linear interpolation, the set 𝒳 = {(0, 0)⊤, (0, 1)⊤, (1, 0)⊤} ⊂ ℜ2

is a well-posed set inside the ball ℬ1(0), but not a well-posed set inside the ball ℬ106(0)3.
In addition, the well-poisedness of the set 𝒳 also depends on the corresponding poly-
nomial space for interpolation.

We will use the following definition of a well-posed set, which is given by referring
to Definition 3.6 in the monograph of Conn, Scheinberg, and Vicente [20].

Definition 1.1. Let Λ > 0, and let ℬ ∈ ℜ𝑛. Let 𝜙 = {𝜙1(𝒙), 𝜙2(𝒙), ⋯ , 𝜙𝑚(𝒙)} be a
basis in the 𝑛-dimensional polynomial space 𝒫𝑑

𝑛 of degree no greater than 𝑑. The set
𝒳 = {𝒚1, 𝒚2, ⋯ , 𝒚𝑚} is said to be Λ-poised in ℬ (in the interpolation sense) if and only
if
1. For the basis of Lagrange polynomials4 𝑙𝑖(𝒙) associated with 𝒳 , we have

Λ ≥ max
1≤𝑖≤𝑚

max
𝒙∈ℬ |𝑙𝑖(𝒙)| ,

or, equivalently,
2. For any 𝒙 ∈ ℬ, there exists 𝜆𝜆𝜆(𝒙) ∈ ℜ𝑚 such that

𝑚

∑
𝑖=1

𝜆𝑖(𝒙)𝜙(𝒚𝑖) = 𝜙(𝒙) and ‖𝜆(𝒙)‖∞ ≤ Λ,

where 𝜆𝑖 denotes the 𝑖-th element of 𝜆𝜆𝜆 here.
Or, equivalently,
3. By replacing any point in 𝒳 with any point 𝒙 in ℬ, the corresponding volume of the
set {𝜙(𝒚1), 𝜙(𝒚2), ⋯ , 𝜙(𝒚𝑚)} can be enlarged by at most a factor of Λ.

To more intuitively illustrate the concrete strategy of improving an interpolation set
by generating interpolation points, we present an example in Figure 1-1 [20], where six
interpolation points are distributed over the region [0, 1] × [0, 1]. We can observe that
the poisedness constant Λ in subfigure 1-1d of Figure 1-1 is the smallest among all the
subfigures. In addition, sometimes the poisedness constant Λ can be greatly improved
after one of the six interpolation points is replaced by another point (for example, when
point A in subfigure 1-1c of Figure 1-1 is replaced by point B in subfigure 1-1d).

Below we give an assumption on the objective function 𝑓 for theoretical purposes.
Note that this assumption is used for theoretical analysis and does not imply that derivative-
free optimization methods can only solve problems that satisfy this assumption.

3The specific reason is omitted here.
4See the monograph of Conn, Scheinberg, and Vicente [20].
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(a) Λ = 440 (b) Λ = 21296

(c) Λ = 524982 (d) Λ = 1

Figure 1-1 The poisedness constants Λ with different distributions on [0, 1] × [0, 1]

Assumption 1.2. Suppose a set 𝑆 and a radius Δmax are given. Assume that 𝑓 is con-
tinuously differentiable in a suitable open neighborhood of ⋃

𝒙∈𝑆
ℬΔmax(𝒙), and that its

gradient is Lipschitz continuous.

Next we present the definition of fully linear models that needs to be mentioned in
this dissertation.

Definition 1.3 (Fully linear models, see Definition 6.1 in the monograph of Conn,
Scheinberg, and Vicente [20]). Given a function 𝑓 ∶ ℜ𝑛 → ℜ satisfying Assump-
tion 1.2. We call a class of model functions {𝑄 ∶ℜ𝑛 → ℜ, 𝑄∈ 𝒞1} a class of fully
linear models if it satisfies the following conditions:
1. There exist positive constants 𝜅𝑒𝑓 , 𝜅𝑒𝑔 and 𝜈𝑄 such that for any 𝒙 ∈ 𝑆 and
Δ ∈ (0, Δmax], there exists a model function 𝑄(𝒚) in the class whose gradient is contin-
uous and whose Lipschitz constant is bounded above by 𝜈𝑄, and which satisfies:
the error between the model gradient and the gradient of 𝑓 satisfies

‖∇𝑓(𝒚) − ∇𝑄(𝒚)‖2 ≤ 𝜅𝑒𝑔Δ, ∀ 𝒚 ∈ ℬΔ(𝒙),

and the error between the model and the function 𝑓 satisfies

|𝑓 (𝒚) − 𝑄(𝒚)| ≤ 𝜅𝑒𝑓 Δ2, ∀ 𝒚 ∈ ℬΔ(𝒙).

Such a model 𝑄 is said to be fully linear on ℬΔ(𝒙).
2. For this class, there exists an algorithm, which we call a “model-improvement”
algorithm (see Chapter 6 of the monograph by Conn, Scheinberg, and Vicente [20]),
that, in a finite number of steps uniformly bounded with respect to 𝒙 and Δ, satisfies one
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of the following:
- Determines that a given model 𝑄 in the class is fully linear on ℬΔ(𝒙);
- Finds a model 𝑄̃ in the class that is fully linear on ℬΔ(𝒙).

1.3 Evaluation Methods for Derivative-Free Optimization Algorithms

This section introduces evaluation methods for derivative-free optimization algorithms.
In fact, evaluating and comparing different algorithms is an important part of research
on optimization algorithms, and it is related to howwe judge the quality of algorithm de-
sign. To guide algorithm selection for practical applications and specific improvements
in research, we need to establish and use reliable evaluation systems. Here we introduce
approaches to evaluating derivative-free optimization methods beyond the traditional
practice of observing curves of iterative function values. The methods introduced here
will be used in subsequent chapters for algorithm comparison. It is important to note
that, in derivative-free optimization, we usually focus on the number of function evalua-
tions or the number of sampled points, rather than the number of algorithmic iterations.

The most common evaluation criteria for derivative-free optimization algorithms
are the Performance Profile [21, 164, 165] and the Data Profile [21, 165]. They are the
two most common ways to compare derivative-free algorithms by solving test problem
sets. The two profiles help us display, in compact graphical form, information such as
the convergence speed of derivative-free optimization algorithms and the proportion of
problems solved successfully.

Assume 𝒙𝑁 is the best point found by the algorithm after 𝑁 function evaluations,
𝒙int is the initial point, and 𝒙∗ is a known best solution. Given an accuracy 𝜏 ∈ [0, 1],
we define

𝑇𝑎,𝑝 =
{

1, if for some 𝑁 we have 𝑓(𝒙𝑁 ) ≤ 𝑓(𝒙∗) + 𝜏 (𝑓(𝒙int) − 𝑓(𝒙∗)),
0, otherwise,

where 𝑎 denotes the corresponding algorithm and 𝑝 denotes the corresponding problem.
Note that, in the comparisons of this dissertation, 𝒙∗ is obtained through numerical
experiments.

We first give the definition of the Performance Profile. In a Performance Profile, the
function 𝜌𝑎 ∶ [1, ∞) ↦ [0, 1] corresponds to the proportion of problems in the test set
𝒫 that algorithm 𝑎 ∈ 𝒜 solves successfully, and is defined as

𝜌𝑎(𝛼) = 1
|𝒫| |{𝑝 ∈ 𝒫 ∶ 𝑟𝑎,𝑝 ≤ 𝛼}| ,

where

𝑟𝑎,𝑝 =
⎧⎪
⎨
⎪⎩

𝑁𝑎,𝑝

min {𝑁 ̃𝑎,𝑝 ∶ ̃𝑎 ∈ 𝒜, 𝑇 ̃𝑎,𝑝 = 1}
, if 𝑇𝑎,𝑝 = 1,

∞, if 𝑇𝑎,𝑝 = 0,
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𝑁𝑎,𝑝 = min {𝑁 ∈ ℕ+, 𝑓 (𝒙𝑁 ) ≤ 𝑓(𝒙∗) + 𝜏 (𝑓(𝒙int) − 𝑓(𝒙∗))} .

Note that here the notation | ⋅ | denotes the number of elements in the corresponding set.
The above profile is created by plotting the function 𝜌𝑎 for all algorithms in 𝒜. It

attempts to examine and present algorithmic efficiency and robustness. A characteristic
of the Performance Profile is that a higher curve corresponds to better solution perfor-
mance for that algorithm; here we use NF to denote the number of function evaluations
used in solving.

In addition, we use the Data Profile [165] to provide some raw information (the
Performance Profile focuses on comparing different algorithms, whereas the Data Pro-
file reflects the number of function evaluations required to solve the test set). This is
valuable as a reference for users who have a specific computational budget and need to
choose an algorithm that may achieve a given amount of function value decrease. In a
Data Profile,

𝛿𝑎(𝛽) = 1
|𝒫| |{𝑝 ∈ 𝒫 ∶ 𝑁𝑎,𝑝 ≤ 𝛽 (𝑛 + 1) 𝑇𝑎,𝑝}| ,

and the larger the value of 𝛿𝑎(𝛽), the more problems are solved successfully.
This dissertation will use these two evaluation methods to compare different algo-

rithms, including newly designed ones. It should also be noted that, in some profiles
in this dissertation, a logarithmic scale transformation will be applied to the horizontal
axis in order to display the comparative content and regions that we are more concerned
with.

1.4 Main Content of the Dissertation

This dissertation will attempt to analyze and address the following questions around
derivative-free optimization.

(1) How can we design better approximationmodels for model-based derivative-free
optimization methods?

(2) How are the models andmodel-basedmethods affected by transformed and noisy
output function values?

(3) How can we solve large-scale derivative-free optimization problems more effec-
tively?

(4) Can quadratic interpolation models improve line search methods that use ap-
proximate first-order derivatives?

Regarding question (3), we know that model-based trust-region methods are a ma-
ture class of algorithms for solving nonlinear programming problems. Most of these
algorithms use quadratic models because quadratic models can effectively fit curvature
information of the objective function. However, for existing model-based derivative-
free optimization methods, solving large-scale problems remains a bottleneck, because
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when the problem dimension is high, the computational cost of constructing local (poly-
nomial) models and the interpolation error may be high, leading to poor practical per-
formance. This can be regarded as the “curse of dimensionality” in derivative-free opti-
mization. Traditional derivative-free optimization methods use quadratic interpolation
models to approximate the objective function, but the limited available information of
a black-box objective function leads to lower reliability of these models. Currently,
some methods have been proposed and developed to handle large-scale problems; an
important approach is to use subspace methods, whose main idea is to minimize the
objective function in a low-dimensional subspace at each iteration to obtain the next
iterate [35, 141, 166–169]. This dissertation will introduce research carried out around
using subspace methods to solve large-scale derivative-free optimization problems.

Specifically, the main thread of the remaining content of this dissertation is as fol-
lows: Chapter 2 focuses on improvements to quadratic interpolationmodels in derivative-
free trust-region algorithms. We introduce the minimum 𝐻2-norm updated quadratic
interpolationmodel, including themotivation for constructingminimum-norm quadratic
models using the 𝐻2 norm and the properties of the model, the formula of the mini-
mum 𝐻2-norm updated quadratic model, and present corresponding numerical results
and summaries. At the same time, we discuss the minimum weighted 𝐻2-norm up-
dated quadratic interpolation model, including the minimum weighted 𝐻2-norm up-
dated quadraticmodel and theKKTmatrix, the error of theKKTmatrix, and the barycen-
ter of theweight coefficient region of theminimumweighted𝐻2-norm updated quadratic
model, and give corresponding numerical results and summaries. In addition, we in-
troduce a derivative-free method using a new underdetermined quadratic interpolation
model, including its background and motivation, model details that consider properties
of the previous trust-region iteration, the convexity of the subproblem for obtaining the
corresponding model and the computational formula of the model, as well as the cor-
responding numerical results. We also introduce conditions under which the distance
between minimizers of nonconvex quadratic functions in a trust region decreases, and
present corresponding numerical results and summaries.

Chapter 3 introduces derivative-free optimization with transformed objective func-
tions and algorithms based on minimum Frobenius-norm updated quadratic models.
Specifically, it includes the corresponding problems, model-based trust-region opti-
mization algorithms and sampling schemes, minimumFrobenius-norm updated quadratic
models for transformed objective functions, trust-region subproblems, and optimality-
preserving transformations. In addition, we discuss model properties corresponding to
positivemonotone transformations and affine transformations, as well as the correspond-
ing fully linear models and convergence analysis, and we present numerical results and
summaries for corresponding test problems and real-world problems.
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Chapter 4 introduces subspace methods and parallel methods. For large-scale prob-
lems, we propose a new derivative-free subspace trust-region method: the 2D-MoSub
algorithm, and we provide details including the 2D-MoSub algorithm, the poisedness
and quality of the interpolation set, some properties of 2D-MoSub, and numerical re-
sults. At the same time, we propose a new (parallelizable) derivative-free optimization
algorithm that combines line search and trust-region techniques, including its back-
ground and motivation, the specific process of combining the SUSD direction with
trust-region interpolation, theoretical analysis of the iterative direction of the SUSD-
TR algorithm, exploratory steps and structure steps, as well as numerical results.

The final chapter provides a summary of the dissertation and discusses future re-
search directions.
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Chapter 2 Improvements to Quadratic Interpolation Models in
Derivative-Free Trust-Region Algorithms

2.1 Least 𝐻2 Norm Update of Quadratic Interpolation Models in Derivative-Free
Trust-Region Algorithms

The methods and models proposed in this section are improvements over Powell’s
derivative-free optimization algorithms and models [92, 94, 170]. The main idea of
Powell’s method is to obtain a quadratic model function via underdetermined interpola-
tion at each iteration and to update the previous model. Specifically, at the 𝑘-th iteration,
the unique quadratic model 𝑄𝑘 is obtained by solving

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), 𝒚𝑖 ∈ 𝒳𝑘.
(2-1)

We denote by 𝑚 the number of interpolation points in 𝒳𝑘. The method aims to obtain
a new iterate by minimizing the quadratic model 𝑄𝑘 within the trust region. Conn and
Toint [171], Conn, Scheinberg, and Toint [160, 172], andWild [157] proposed choosing
the objective in (2-1) as ‖∇2𝑄‖

2
𝐹 + ‖∇𝑄‖2

2 or ‖∇2𝑄‖
2
𝐹 . Bandeira, Scheinberg, and

Vicente [153] discussed obtaining underdetermined quadratic interpolation models by
minimizing ‖vec (∇2𝑄)‖1 for problems with sparse structure. Here the symbol vec
denotes vectorization of a matrix, converting a matrix into a vector. Specifically, for a
matrix 𝑪 ∈ ℜ𝑚×𝑛, vec(𝑪) denotes the vector obtained by stacking the columns of 𝑪 .

As shown by Conn, Scheinberg, and Vicente [20], in order to ensure an interpola-
tion model with fully linear properties (see Definition 6.1 in the monograph by Conn,
Scheinberg, and Vicente [20]), at least 𝑛 + 1 interpolation points are needed, which is
expensive in derivative-free applications. In practice, we find that the 𝑛 + 1 interpola-
tion conditions, i.e., 𝑛 + 1 equality constraints, can be relaxed to “making the average
interpolation error small overall within a certain region.” We use the 𝐻2 norm to mea-
sure and control the interpolation error. Our proposed least 𝐻2 norm updated quadratic
model function can reduce the lower bound on the number of interpolation points re-
quired to construct the model, while also controlling interpolation errors locally. This
is the first time the 𝐻2 norm is used to construct underdetermined quadratic models in
derivative-free methods or trust-region methods. Previously, Zhang [46, 154] discussed
the related use of the 𝐻1 seminorm, and more details will be shown at the beginning of
Section 2.1.2.

The remainder of this part is organized as follows. Section 2.1.1 introduces some
basic results on the 𝐻2 norm for quadratic functions. Section 2.1.2 discusses the mo-
tivation for using the least 𝐻2 norm updated quadratic model functions, the projection
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theory under the 𝐻2 norm, and interpolation error bounds. Section 2.1.3 presents the
least 𝐻2 norm updated quadratic model function and details the KKT conditions of the
optimization problem required to obtain the quadratic model. In addition, we provide
implementation details, including the updating formula for the inverse of the KKT ma-
trix, as well as a model-improvement step that maximizes the denominator in the update
formula. Section 2.1.4 presents numerical results. Finally, we give a summary and some
possible future work.

2.1.1 𝐻2 Norm and Derivative-Free Trust-Region Algorithms

We first give the relevant notation and then proceed with more discussion. Here we
define Ω = ℬ𝑟(𝒙0) = {𝒙 ∈ ℜ𝑛 ∶ ‖𝒙 − 𝒙0‖2 ≤ 𝑟} , 𝑯 = ∇2𝑄 ∈ ℜ𝑛×𝑛, 𝒈 = ∇𝑄(𝒙0) ∈
ℜ𝑛, 𝑐 ∈ ℜ. Note that, unless otherwise stated, ‖ ⋅ ‖ denotes the ℓ2 norm for vectors.
Below we give the definitions of different kinds of (semi)norms.

Definition 2.1. Assume 𝑢 is a function on Ω ⊆ ℜ𝑛 and 1 ≤ 𝑝 < ∞. If 𝑢 is twice
differentiable on Ω and for any natural number 𝑎 with 𝑎 ≤ 2, we have 𝜕𝑎𝑢

𝜕𝒙𝑎 ∈ 𝐿2(Ω),
then

‖𝑢‖𝐻0(Ω) = (∫Ω
|𝑢(𝒙)|2 𝑑𝒙)

1
2

,

|𝑢|𝐻1(Ω) = (∫Ω
‖∇𝑢(𝒙)‖2

2 𝑑𝒙)

1
2

,

|𝑢|𝐻2(Ω) = (∫Ω
‖∇2𝑢(𝒙)‖

2
𝐹 𝑑𝒙)

1
2

.

In addition, the 𝐻2 norm of 𝑢 is defined as

‖𝑢‖𝐻2(Ω) = (‖𝑢‖2
𝐻0(Ω) + |𝑢|2

𝐻1(Ω) + |𝑢|2
𝐻2(Ω))

1
2 .

Note that we use | ⋅ | to denote seminorms and ‖ ⋅ ‖ to denote norms (with corre-
sponding subscripts). Based on Definition 2.1, a simple calculation yields the following
theorem on the 𝐻2 norm of quadratic functions.
Remark 2.1. The point 𝒙0 denotes the center of the region where the 𝐻2 norm is com-
puted. 𝒙0 is sometimes called the base point [94].

Theorem 2.2. Given the quadratic function

𝑄(𝒙) = 1
2 (𝒙 − 𝒙0)

⊤ 𝑯 (𝒙 − 𝒙0) + (𝒙 − 𝒙0)
⊤ 𝒈 + 𝑐,

we have

‖𝑄‖2
𝐻2(ℬ𝑟(𝒙0)) =𝒱𝑛𝑟𝑛

[ (
𝑟4

2(𝑛 + 4)(𝑛 + 2) + 𝑟2

𝑛 + 2 + 1) ‖𝑯‖2
𝐹 + (

𝑟2

𝑛 + 2 + 1) ‖𝒈‖2
2

+ 𝑟4

4(𝑛 + 4)(𝑛 + 2)(Tr(𝑯))2 + 𝑟2

𝑛 + 2𝑐 Tr(𝑯) + 𝑐2
],

(2-2)
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where 𝒱𝑛 denotes the volume of the 𝑛-dimensional ℓ2 unit ball ℬ1(𝒙0), and Tr(⋅) denotes
the trace of a matrix.

Proof. By direct calculation (see Zhang [46] for details)

‖𝑄(𝒙)‖2
𝐻0(ℬ𝑟(𝒙0))

=𝒱𝑛𝑟𝑛
(

2𝑟4

4(𝑛 + 2)(𝑛 + 4)‖𝑯‖2
𝐹 + 𝑟2

𝑛 + 2‖𝒈‖2
2

+ 𝑟4

4(𝑛 + 2)(𝑛 + 4)(Tr(𝑯))2 + 𝑟2

𝑛 + 2𝑐 Tr(𝑯) + 𝑐2
) ,

and
|𝑄|2

𝐻1(ℬ𝑟(𝒙0)) = 𝒱𝑛𝑟𝑛
(

𝑟2

𝑛 + 2‖𝑯‖2
𝐹 + ‖𝒈‖2

2) .

Moreover, we have |𝑄|2
𝐻2(ℬ𝑟(𝒙0))

= 𝒱𝑛𝑟𝑛‖𝑯‖2
𝐹 . Therefore, (2-2) follows.

Considering that the interpolation model functions given in this section are appli-
cable to general model-based derivative-free trust-region algorithms based on interpo-
lation models, before giving more details we first present the general framework of a
model-based derivative-free trust-region algorithm1, Algorithm 3. Note that this section
does not propose a new framework, but focuses on a new quadratic model (which can be
used in a general trust-region framework). Here, we still keep the wording “accept the
model” rather than “accept the interpolation set” for consistency. More introductions to
derivative-free trust-region methods can be found in the survey by Larson, Menickelly,
and Wild [128], and in the monographs by Conn, Scheinberg, and Vicente [20] and by
Audet and Hare [21].

Algorithm 3 Framework of a Model-Based Derivative-Free Trust-Region Algorithm
Input: black-box objective function 𝑓 and initial point 𝒙int.
Output: minimizer 𝒙∗ and least function value.
Initialize and obtain the interpolation set 𝒳0, the initial quadratic model 𝑄0(𝒙) (whose
gradient at the current point is denoted by 𝒈0), and the parameters Δ0, 𝛾, 𝜀𝑐 , 𝜇, ̂𝜂1, ̂𝜂2.
Let 𝑘 = 0.
Step 1 (Acceptance test): If ‖𝒈𝑘‖ > 𝜀𝑐 , then accept 𝒈𝑘, Δ𝑘, and the model 𝑄𝑘.
If ‖𝒈𝑘‖ ≤ 𝜀𝑐 , then call the model-improvement step and test whether the current
model on the trust region is accepted. If the model 𝑄𝑘 cannot be accepted or Δ𝑘 >
𝜇 ‖𝒈𝑘‖, then construct an acceptable model using the model-improvement step and
accordingly adjust the radius Δ𝑘.
Step 2 (Trial step): Solve

min
𝒅

𝑄𝑘(𝒙opt + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ𝑘,
1The testing code framework in this section is based on Algorithm 10.1 in the monograph by Conn, Scheinberg,

and Vicente [20]. This section focuses on our new quadratic model and its computation.
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where 𝒙opt is the point with the smallest function value among all interpolation points
at the current iteration, and obtain 𝒅𝑘.
Step 3 (Acceptance of the trial point): Compute 𝑓(𝒙opt + 𝒅𝑘) and define

𝜌𝑘 =
𝑓(𝒙opt) − 𝑓(𝒙opt + 𝒅𝑘)

𝑄𝑘(𝒙opt) − 𝑄𝑘(𝒙opt + 𝒅𝑘) .

If 𝜌𝑘 ≥ ̂𝜂1, or 𝜌𝑘 > ̂𝜂2 and the model is accepted, then let 𝒙𝑘+1 = 𝒙opt+𝒅𝑘, update the
model and the sample/interpolation set, and obtain 𝑄𝑘+1 (the gradient at the current
point 𝒈𝑘+1) and 𝒳𝑘+1 = 𝒳𝑘 ∪ {𝒚new}\{𝒚𝑡}, where 𝒚new = 𝒙𝑘+1 is the new iterate/in-
terpolation point, and the farthest point 𝒚𝑡 is discarded from the interpolation set in
this step. Otherwise, keep the model and the iterate unchanged, and set 𝒙𝑘+1 = 𝒙𝑘.
Step 4 (Model-improvement step): If 𝜌𝑘 < ̂𝜂1 and the model is not accepted, then
improve the model. (The test version iteratively updates the inverse KKT matrix af-
ter checking acceptance based on interpolation poisedness, following the description
at the end of Section 2.1.3. More details are given in Chapter 6 of the monograph
by Conn, Scheinberg, and Vicente [20].) Define 𝑄𝑘+1 and 𝒳𝑘+1 as the (possibly im-
proved) new model and sample/interpolation set.
Step 5 (Update of the trust-region radius): Update Δ𝑘+1 according to 𝜌𝑘 and Δ𝑘.
For example, if 𝜌𝑘 < ̂𝜂1 and the model is accepted, set Δ𝑘+1 = 1

𝛾 Δ𝑘; if 𝜌𝑘 ≥ ̂𝜂1, set
Δ𝑘+1 = 𝛾Δ𝑘; in other cases, set Δ𝑘+1 = Δ𝑘.
Let 𝑘 = 𝑘 + 1, then return to Step 1, until Δ𝑘 < 𝜀𝑐 and ‖𝒈𝑘‖ < 𝜀𝑐 .

2.1.2 Motivation and Properties of Constructing Least Norm Quadratic Models
Using 𝐻2 Norm

This section introduces the motivation for obtaining approximation models of the objec-
tive function using the 𝐻2 norm. We focus on the relationship between norm measure-
ments at points and norm measurements in an average or global sense over a region. In
addition, Powell and others proposed obtaining least Frobenius norm updated quadratic
model functions by solving (2-1), demonstrating the advantages of least norm updated
quadratic models. Note that, for Powell’s model, there is a lower bound on the number
of interpolation points or equations [94]. Moreover, most existing models are obtained
solely by interpolation at multiple points, without considering the average of the objec-
tive function or its derivatives over a (trust) region. Before introducing how to obtain
our new model, we first present the convexity of the objective function (2-3).

Theorem 2.3. Given 𝐶1, 𝐶2, 𝐶3 > 0, the function

𝐶1 ‖𝑄(𝒙)‖2
𝐻0(Ω) + 𝐶2 |𝑄(𝒙)|2

𝐻1(Ω) + 𝐶3 |𝑄(𝒙)|2
𝐻2(Ω) (2-3)

is strictly convex as a function of 𝑄.
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Proof. We have

𝐶1 ‖𝑄(𝒙)‖2
𝐻0(Ω) + 𝐶2 |𝑄(𝒙)|2

𝐻1(Ω) + 𝐶3 |𝑄(𝒙)|2
𝐻2(Ω)

= 𝐶1 ∫Ω
|𝑄(𝒙)|2 𝑑𝒙 + 𝐶2 ∫Ω

‖∇𝑄(𝒙)‖2
2 𝑑𝒙 + 𝐶3 ∫Ω

‖∇2𝑄(𝒙)‖
2
𝐹 𝑑𝒙,

and we need to prove the inequality

[𝜇 (𝐶1 ‖𝑄𝑎(𝒙)‖
2
𝐻0(Ω) + 𝐶2 |𝑄𝑎(𝒙)|

2
𝐻1(Ω) + 𝐶3 |𝑄𝑎(𝒙)|

2
𝐻2(Ω))

+ (1 − 𝜇) (𝐶1 ‖𝑄𝑏(𝒙)‖
2
𝐻0(Ω) + 𝐶2 |𝑄𝑏(𝒙)|

2
𝐻1(Ω) + 𝐶3 |𝑄𝑏(𝒙)|

2
𝐻2(Ω)) ]

− [𝐶1 ‖𝜇𝑄𝑎(𝒙) + (1 − 𝜇) 𝑄𝑏(𝒙)‖
2
𝐻0(Ω) + 𝐶2 |𝜇𝑄𝑎(𝒙) + (1 − 𝜇) 𝑄𝑏(𝒙)|

2
𝐻1(Ω)

+ 𝐶3 |𝜇𝑄𝑎(𝒙) + (1 − 𝜇) 𝑄𝑏(𝒙)|
2
𝐻2(Ω) ] > 0 (2-4)

for 𝑄𝑎, 𝑄𝑏 ∈ 𝒬, 0 < 𝜇 < 1, and 𝐶1, 𝐶2, 𝐶3 > 0.
In fact, the left-hand side of inequality (2-4) can be rewritten as

(𝜇 − 𝜇2) (𝐶1 ∫Ω
|𝑄𝑎(𝒙) − 𝑄𝑏(𝒙)|

2 𝑑𝒙 + 𝐶2 ∫Ω
‖∇𝑄𝑎(𝒙) − ∇𝑄𝑏(𝒙)‖

2
2 𝑑𝒙

+ 𝐶3 ∫Ω
‖∇2𝑄𝑎(𝒙) − ∇2𝑄𝑏(𝒙)‖

2
𝐹 𝑑𝒙) > 0.

Therefore, we have proved that (2-3) is strictly convex as a function of 𝑄.

By Theorem 2.3, the optimization problem

min
𝑄∈𝒬 ‖𝑄 − 𝑄𝑘−1‖

2
𝐻2(ℬ𝑟(𝒙0))

s. t. 𝑄(𝒚) = 𝑓(𝒚), 𝒚 ∈ 𝒳𝑘

(2-5)

has a unique quadratic model solution 𝑄(𝒙).
In addition, we can obtain the following result.

Remark 2.2. For the optimization problem of obtaining the least weighted 𝐻2 norm
updated model

min
𝑄∈𝒬

𝐶1 ‖𝑄 − 𝑄𝑘−1‖
2
𝐻0(ℬ𝑟(𝒙0)) + 𝐶2 |𝑄 − 𝑄𝑘−1|

2
𝐻1(ℬ𝑟(𝒙0)) + 𝐶3 |𝑄 − 𝑄𝑘−1|

2
𝐻2(ℬ𝑟(𝒙0))

s. t. 𝑄(𝒚) = 𝑓(𝒚), 𝒚 ∈ 𝒳𝑘,
(2-6)

the solution is unique, where 𝐶1, 𝐶2, 𝐶3 > 0.

It is easy to see that the 𝐻1 seminorm of a quadratic model function on ℬ𝑟(𝒙0)
corresponds to the average of the corresponding norm of the first derivative over the
region ℬ𝑟(𝒙0), while the 𝐻2 seminorm on ℬ𝑟(𝒙0) corresponds to the average of the
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corresponding norm of the second derivative over ℬ𝑟(𝒙0). In fact, minimizing the inter-
polation error of the quadratic model function values is also important. Minimizing the
𝐿2 norm can play part of the role of relaxing the interpolation conditions 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖)
by reducing the interpolation error in function values, thereby relaxing the lower bound
on the number of interpolation points. According to the projection property to be in-
troduced next, we indeed have reason to include the 𝐻0 norm, i.e., the 𝐿2 norm, in the
objective function of (2-6). The (weighted) sum of the 𝐻0 norm, the 𝐻1 seminorm, and
the 𝐻2 seminorm embodies our goal of simultaneously minimizing the average model
error in function values, the average error of first derivatives, and the average error of
second derivatives. This can reduce the lower bound on the number of interpolation
points, i.e., 𝑚 can be smaller than 𝑛 + 1. The numerical results in Section 2.1.4 also
support our choice of using the 𝐻2 norm to obtain the model function.

Below we present the projection property of the least 𝐻2 norm updated quadratic
model and prove that it has an interpolation error bound locally.

Theorem 2.4. Let 𝑄𝑘 be the solution to problem (2-5). If 𝑓 is a quadratic function,
then

‖𝑄𝑘 − 𝑓‖
2
𝐻2(ℬ𝑟(𝒙0)) = ‖𝑄𝑘−1 − 𝑓‖

2
𝐻2(ℬ𝑟(𝒙0)) − ‖𝑄𝑘 − 𝑄𝑘−1‖

2
𝐻2(ℬ𝑟(𝒙0)) . (2-7)

Proof. At the 𝑘-th iteration, for any 𝜉 ∈ ℜ, let 𝑄𝜉 = 𝑄𝑘 + 𝜉 (𝑄𝑘 − 𝑓). Then 𝑄𝜉 is
an interpolation function that satisfies the interpolation conditions in (2-5). Therefore,
by the optimality of 𝑄𝑘, 𝜑(𝜉) = ‖𝑄𝜉 − 𝑄𝑘−1‖

2
𝐻2(ℬ𝑟(𝒙0)) attains its minimum at 𝜉 = 0.

Moreover, we have

𝜑(𝜉) = ‖𝑄𝑘 + 𝜉 (𝑄𝑘 − 𝑓) − 𝑄𝑘−1‖
2
𝐻2(ℬ𝑟(𝒙0))

= 𝜉2 ‖𝑄𝑘 − 𝑓‖
2
𝐻2(ℬ𝑟(𝒙0)) + ‖𝑄𝑘 − 𝑄𝑘−1‖

2
𝐻2(ℬ𝑟(𝒙0))

+ 2𝜉{ ∫ℬ𝑟(𝒙0)
(𝑄𝑘(𝒙) − 𝑄𝑘−1(𝒙)) ⋅ (𝑄𝑘(𝒙) − 𝑓(𝒙)) 𝑑𝒙

+ ∫ℬ𝑟(𝒙0)
(∇𝑄𝑘(𝒙) − ∇𝑄𝑘−1(𝒙))

⊤
(∇𝑄𝑘(𝒙) − ∇𝑓(𝒙)) 𝑑𝒙

+ ∫ℬ𝑟(𝒙0)
(1, ⋯ , 1) (∇2𝑄𝑘(𝒙) − ∇2𝑄𝑘−1(𝒙)) ∘ (∇2𝑄𝑘(𝒙) − ∇2𝑓(𝒙)) (1, ⋯ , 1)⊤𝑑𝒙},

(2-8)
where the symbol ∘ denotes the Hadamard product. Therefore the terms in the last
bracket of (2-8) are equal to 0. Considering 𝜑(−1) completes the proof.

From (2-7), we obtain the relation in the 𝐻2 norm sense

‖𝑄𝑘(𝒙) − 𝑓(𝒙)‖𝐻2(ℬ𝑟(𝒙0)) ≤ ‖𝑄𝑘−1(𝒙) − 𝑓(𝒙)‖𝐻2(ℬ𝑟(𝒙0)) .
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This implies, to some extent, that the model function 𝑄𝑘 has more accurate function
values and gradients with respect to the approximated objective function 𝑓 than 𝑄𝑘−1
(except in the case 𝑄𝑘 = 𝑄𝑘−1). In fact, we can directly obtain the following corollary
from Theorem 2.4.

Corollary 2.5. Let 𝑄𝑘 be the solution to problem (2-6). If 𝑓 is a quadratic function,
then

𝐶1 ‖𝑄𝑘 − 𝑓‖
2
𝐻0(ℬ𝑟(𝒙0)) + 𝐶2 |𝑄𝑘 − 𝑓|

2
𝐻1(ℬ𝑟(𝒙0)) + 𝐶3 |𝑄𝑘 − 𝑓|

2
𝐻2(ℬ𝑟(𝒙0))

= 𝐶1 ‖𝑄𝑘−1 − 𝑓‖
2
𝐻0(ℬ𝑟(𝒙0)) + 𝐶2 |𝑄𝑘−1 − 𝑓|

2
𝐻1(ℬ𝑟(𝒙0)) + 𝐶3 |𝑄𝑘−1 − 𝑓|

2
𝐻2(ℬ𝑟(𝒙0))

− 𝐶1 ‖𝑄𝑘 − 𝑄𝑘−1‖
2
𝐻0(ℬ𝑟(𝒙0)) − 𝐶2 |𝑄𝑘 − 𝑄𝑘−1|

2
𝐻1(ℬ𝑟(𝒙0)) − 𝐶3 |𝑄𝑘 − 𝑄𝑘−1|

2
𝐻2(ℬ𝑟(𝒙0)) ,

where 𝐶1, 𝐶2, 𝐶3 > 0.

Proof. The proof is similar to that of Theorem 2.4.

The approximation of the model function to the objective function is crucial for our
model-based optimization algorithm. Next, we provide an error analysis for interpola-
tion models. First, we give the following two lemmas.

Lemma 2.6 (Interpolation inequality). Assume 1 ≤ 𝑐1 ≤ 𝑐2 ≤ 𝑐3 ≤ ∞, and
1
𝑐2

= 𝜃
𝑐1

+ (1−𝜃)
𝑐3

. Assume 𝑢 ∈ 𝐿𝑐1(Ω) ∩ 𝐿𝑐3(Ω). Then 𝑢 ∈ 𝐿𝑐2(Ω), and ‖𝑢‖𝐿𝑐2 (Ω) ≤
‖𝑢‖𝜃

𝐿𝑐1 (Ω)‖𝑢‖1−𝜃
𝐿𝑐3 (Ω).

Proof. See Evans’monograph [173] for details.

Definition 2.7 (Sobolev spaces). The Sobolev space 𝒲𝑘,𝑝(Ω) contains all locally in-
tegrable functions 𝑢 ∶ Ω → ℜ such that for all multi-indices 𝛼 with |𝛼| ≤ 𝑘, the
weak derivatives 𝐷𝛼𝑢 exist2 and belong to 𝐿𝑝(Ω). When 𝑝 = 2, we usually write
ℋ𝑘(Ω) = 𝒲𝑘,2(Ω).

Lemma 2.8. Assume 𝑢 ∈ ℋ1(Ω) and |𝜕𝑖𝑢| ≤ 𝑀1, 𝑖 = 1, ⋯ , 𝑛. For ∀ 𝒚 ∈ Ω ∶= ℬ𝑟(𝒙0),
we have

|𝑢(𝒚)| ≤𝒱
− 1

2
𝑛 𝑟− 𝑛

2 ‖𝑢‖𝐿2(Ω) + 𝒱
− 1

𝑝
𝑛 𝑟

𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

1 |𝑢|𝜃
𝐻1(Ω), (2-9)

where 1
𝑝 + 1

𝑞 = 1, 𝜃 = 2
𝑝 ≤ 1, 𝑝 > 𝑛, and 𝒱𝑛 denotes the volume of the 𝑛-dimensional ℓ2

unit ball ℬ1(𝒙0).
2More details are given in Evans’monograph [173].
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Proof. We extend the function 𝑢 outside the region Ω so that for ∀ 𝒚 ∉ ℬ𝑟(𝒙0), 𝑢(𝒚) = 0.
For ∀ 𝒚 ∈ ℬ𝑟 (𝒙0), we have

|𝑢(𝒚)| ≤
|
𝑢(𝒚) − 1

|ℬ𝑟(𝒚)| ∫ℬ𝑟(𝒚)
𝑢(𝒙)𝑑𝒙

|
+ 1

|ℬ𝑟(𝒚)| |∫ℬ𝑟(𝒚)
𝑢(𝒙)𝑑𝒙|

≤ 1
|ℬ𝑟(𝒚)| (∫ℬ𝑟(𝒚)

|𝑢(𝒚) − 𝑢(𝒙)| 𝑑𝒙 + |∫ℬ𝑟(𝒚)
𝑢(𝒙)𝑑𝒙|) ,

(2-10)

where |ℬ𝑟(𝒚)| denotes the volume of the ball ℬ𝑟(𝒚). Moreover, both terms on the right-
hand side of (2-10) have upper bounds. Based on Hölder’s inequality, we have

|∫ℬ𝑟(𝒚)
𝑢(𝒙)𝑑𝒙| ≤ (∫ℬ𝑟(𝒚)

(𝑢(𝒙))2𝑑𝒙)

1
2

(∫ℬ𝑟(𝒚)
12𝑑𝒙)

1
2

≤ |ℬ𝑟(𝒚)|
1
2 ‖𝑢‖𝐿2(Ω) = 𝒱

1
2
𝑛 𝑟

𝑛
2 ‖𝑢‖𝐿2(Ω) .

According to the proof of Morrey’s inequality in Evans’monograph [173], we have

∫ℬ𝑟(𝒚)
|𝑢(𝒚) − 𝑢(𝒙)| 𝑑𝒙 ≤ 𝑟𝑛

𝑛 ∫ℬ𝑟(𝒚)

‖∇𝑢(𝒙)‖2
‖𝒚 − 𝒙‖𝑛−1

2
𝑑𝒙

≤ 𝑟𝑛

𝑛 (∫ℬ𝑟(𝒚)
‖∇𝑢(𝒙)‖𝑝

2 𝑑𝒙)

1
𝑝

(∫ℬ𝑟(𝒚)

1
‖𝒚 − 𝒙‖(𝑛−1)𝑞

2
𝑑𝒙

)

1
𝑞

,

where 1
𝑝 + 1

𝑞 = 1 and (𝑛 − 1)(𝑞 − 1) ∈ (0, 1). We obtain

(∫ℬ𝑟(𝒚)

1
‖𝒚 − 𝒙‖(𝑛−1)𝑞

2
𝑑𝒙

)

1
𝑞

= (∫ℬ𝑟(0)

1
𝒛(𝑛−1)𝑞 𝑑𝒛)

1
𝑞

= 𝒱
1
𝑞
𝑛 𝑛

1
𝑞 (𝑛 + 𝑞 − 𝑛𝑞)− 1

𝑞 𝑟
𝑛
𝑞 +1−𝑛.

In addition, Lemma 2.6 helps us obtain

(∫ℬ𝑟(𝒚)
‖∇𝑢(𝒙)‖𝑝

2 𝑑𝒙)

1
𝑝

=
‖
‖
‖
‖‖

(

𝑛

∑
𝑖=1

|𝜕𝑖𝑢(𝒙)|
2
)

1
2 ‖
‖
‖
‖‖𝐿𝑝(ℬ𝑟(𝒚))

≤
‖
‖
‖
‖‖

(

𝑛

∑
𝑖=1

|𝜕𝑖𝑢(𝒙)|
2
)

1
2 ‖
‖
‖
‖‖𝐿𝑝(Ω)

≤
‖
‖
‖
‖‖

(

𝑛

∑
𝑖=1

|𝜕𝑖𝑢(𝒙)|
2
)

1
2 ‖
‖
‖
‖‖

𝜃

𝐿2(Ω)

‖
‖
‖
‖‖

(

𝑛

∑
𝑖=1

|𝜕𝑖𝑢(𝒙)|
2
)

1
2 ‖
‖
‖
‖‖

1−𝜃

𝐿∞(Ω)

≤ 𝑛
1−𝜃

2 |𝑢|𝜃
𝐻1(Ω) 𝑀1−𝜃

1 ,
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where 𝜃 = 2
𝑝 ≤ 1 and 𝑝 > 𝑛. Hence,

∫ℬ𝑟(𝒚)
|𝑢(𝒚) − 𝑢(𝒙)| 𝑑𝒙 ≤ 𝑟𝑛

𝑛 𝑛
1−𝜃

2 |𝑢|𝜃
𝐻1(Ω) 𝑀1−𝜃

1 𝒱
1
𝑞
𝑛 𝑛

1
𝑞 (𝑛 + 𝑞 − 𝑛𝑞)− 1

𝑞 𝑟
𝑛
𝑞 +1−𝑛

= 𝒱
1
𝑞
𝑛 𝑟

𝑛
𝑞 +1𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

1 |𝑢|𝜃
𝐻1(Ω) .

Therefore,

|𝑢(𝒚)| ≤ 1
𝒱𝑛𝑟𝑛 [

𝑟
𝑛
𝑞 +1𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 |𝑢|𝜃

𝐻1(Ω)𝑀
1−𝜃
1 𝒱

1
𝑞
𝑛 + 𝒱

1
2
𝑛 𝑟

𝑛
2 ‖𝑢‖𝐿2(Ω)]

= 𝒱
− 1

2
𝑛 𝑟− 𝑛

2 ‖𝑢‖𝐿2(Ω) + 𝒱
1
𝑞 −1
𝑛 𝑟

𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

1 |𝑢|𝜃
𝐻1(Ω).

Hence (2-9) holds.

The following theorem illustrates the relationship between the 𝐻2 norm of a func-
tion in a given region and the absolute value of the function as well as the norm of its
gradient at a point.

Theorem 2.9. Let 𝑢 ∈ ℋ2(Ω), where Ω = ℬ𝑟(𝒙0). Suppose there exist 𝑀1, 𝑀2 such
that |𝜕𝑖𝑢| ≤ 𝑀1, |𝜕

2
𝑖𝑗𝑢| ≤ 𝑀2, 𝑖, 𝑗 = 1, ⋯ , 𝑛, then for ∀ 𝒙 ∈ Ω, we have

|𝑢(𝒙)| ≤ 𝒱
− 1

2
𝑛 𝑟− 𝑛

2 ‖𝑢‖𝐿2(Ω) + 𝒱
− 1

𝑝
𝑛 𝑟

𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

1 |𝑢|𝜃
𝐻1(Ω), (2-11)

‖∇𝑢(𝒙)‖2 ≤ 𝑛
1
2 𝒱

− 1
2

𝑛 𝑟− 𝑛
2 |𝑢|𝐻1(Ω) + 𝒱

− 1
𝑝

𝑛 𝑟
𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

2 |𝑢|𝜃
𝐻2(Ω),

(2-12)

where 1
𝑝 + 1

𝑞 = 1, 𝜃 = 2
𝑝 ≤ 1, 𝑝 > 𝑛, ℬ𝑟(𝒙0) = {𝒙 ∈ ℜ𝑛 ∶ ‖𝒙 − 𝒙0‖2 ≤ 𝑟} , 𝒱𝑛 denotes

the volume of the 𝑛-dimensional ℓ2 unit ball ℬ1(𝒙0).

Proof. We can directly obtain (2-11) from Lemma 2.8. For ∀ 𝒙 ∈ Ω ∶= ℬ𝑟(𝒙0), we
have

|𝜕𝑖𝑢(𝒙)| ≤ 𝒱
− 1

2
𝑛 𝑟− 𝑛

2 |𝑢|𝐻1(Ω) + 𝒱
− 1

𝑝
𝑛 𝑟

𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

2 |𝑢|𝜃
𝐻2(Ω),

where 1
𝑝 + 1

𝑞 = 1, 𝜃 = 2
𝑝 ≤ 1, and 𝑝 > 𝑛. Therefore, we obtain

‖∇𝑢‖2 ≤ 𝑛
1
2 max

𝑖=1,⋯,𝑛 ‖𝜕𝑖𝑢‖𝐿∞(Ω)

≤ 𝑛
1
2

[
𝒱

− 1
2

𝑛 𝑟− 𝑛
2 |𝑢|𝐻1(Ω) + 𝒱

− 1
𝑝

𝑛 𝑟
𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

2 |𝑢|𝜃
𝐻2(Ω)]

,

which gives (2-12).
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According to Theorem 2.9, the following corollary can be naturally derived. We can
observe that reducing the 𝐻2 norm of a function 𝑢 also reduces the absolute value of 𝑢
and the norm of its gradient vector.

Corollary 2.10. Given an objective function 𝑓 ∈ ℋ2(Ω and its quadratic model func-
tion 𝑄, suppose |𝜕𝑖(𝑄 − 𝑓)| ≤ 𝑀1, |𝜕

2
𝑖𝑗(𝑄 − 𝑓)| ≤ 𝑀2, 𝑖, 𝑗 = 1, ⋯ , 𝑛. Then for

∀ 𝒙 ∈ Ω, we have

|𝑄(𝒙) − 𝑓(𝒙)| ≤ 𝒱
− 1

2
𝑛 𝑟− 𝑛

2 ‖𝑄 − 𝑓‖𝐿2(Ω)

+ 𝒱
− 1

𝑝
𝑛 𝑟

𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 1+𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

1 |𝑄 − 𝑓|𝜃
𝐻1(Ω) ,

‖∇𝑄(𝒙) − ∇𝑓(𝒙)‖2 ≤ 𝑛
1
2 𝒱

− 1
2

𝑛 𝑟− 𝑛
2 |𝑄 − 𝑓|𝐻1(Ω)

+ 𝒱
− 1

𝑝
𝑛 𝑟

𝑛
𝑞 +1−𝑛𝑛

1
𝑞 − 𝜃

2 (𝑛 + 𝑞 − 𝑛𝑞)− 1
𝑞 𝑀1−𝜃

2 |𝑄 − 𝑓|𝜃
𝐻2(Ω) ,

where 1
𝑝 + 1

𝑞 = 1, 𝜃 = 2
𝑝 ≤ 1, 𝑝 > 𝑛, and 𝒱𝑛 denotes the volume of the 𝑛-dimensional ℓ2

unit ball ℬ1(𝒙0).

Proof. Replacing 𝑢 by 𝑄 − 𝑓 in Theorem 2.9 gives the proof.

The error analysis in Corollary 2.10 theoretically examines the approximation per-
formance of the least 𝐻2 norm updated quadratic model. Therefore, we conclude that
obtaining the model function by solving subproblem (2-5) or subproblem (2-6) can re-
lax the minimum requirement of interpolation conditions, i.e., it allows us to use fewer
interpolation points while maintaining good approximation properties.

2.1.3 Least 𝐻2 Norm Updating Quadratic Model

In this section, we present the computational approach to obtain the least 𝐻2 norm
updating quadratic model based on the KKT conditions. Theorem 2.2 and its proof
help us derive, at iteration 𝑘, the coefficients of the quadratic model function by solving
the problem

min
𝑐,𝑔,𝑯

𝜂1‖𝑯‖2
𝐹 + 𝜂2‖𝒈‖2

2 + 𝜂3(Tr(𝑯))2 + 𝜂4 Tr(𝑯)𝑐 + 𝜂5𝑐2

s. t. 𝑐 + 𝒈⊤ (𝒚𝑖 − 𝒙0) + 1
2 (𝒚𝑖 − 𝒙0)

⊤ 𝑯 (𝒚𝑖 − 𝒙0) = 𝑓(𝒚𝑖) − 𝑄𝑘−1(𝒚𝑖), 𝑖 = 1, ⋯ , 𝑚
(2-13)

where 𝑯⊤ = 𝑯 , and the solution of (2-13) gives the coefficients of the model differ-
ence 𝑄𝑘 − 𝑄𝑘−1. The choice of the radius 𝑟 used in computing the 𝐻2 norm in the
experiments will be given in Section 2.1.4. For simplicity, we use the points 𝒚1, ⋯ , 𝒚𝑚
to denote the interpolation points at the 𝑘-th iteration. We directly consider a weighted
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objective function with weight coefficients 𝐶1, 𝐶2, and 𝐶3. Note that the coefficients
𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5 satisfy

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜂1 = 𝐶1
𝑟4

2(𝑛 + 4)(𝑛 + 2) + 𝐶2
𝑟2

𝑛 + 2 + 𝐶3,

𝜂2 = 𝐶1
𝑟2

𝑛 + 2 + 𝐶2,

𝜂3 = 𝐶1
𝑟4

4(𝑛 + 4)(𝑛 + 2),

𝜂4 = 𝐶1
𝑟2

𝑛 + 2,

𝜂5 = 𝐶1.

(2-14)

We know that the Lagrangian function corresponding to problem (2-13) is

ℒ(𝑐, 𝒈, 𝑯) = 𝜂1‖𝑯‖2
𝐹 + 𝜂2‖𝒈‖2

2 + 𝜂3(Tr(𝑯))2 + 𝜂4 Tr(𝑯)𝑐 + 𝜂5𝑐2

−
𝑚

∑
𝑖=1

𝜆𝑖 [𝑐 + 𝒈⊤ (𝒚𝑖 − 𝒙0) + 1
2 (𝒚𝑖 − 𝒙0)

⊤ 𝑯 (𝒚𝑖 − 𝒙0) −𝑓(𝒚𝑖) + 𝑄𝑘−1(𝒚𝑖)] .
(2-15)

We use 𝑇 to denote Tr(𝑯). The KKT conditions for problem (2-13) include

0 = 𝜕ℒ(𝑐, 𝒈, 𝑯)
𝜕𝑐 = 2𝜂5𝑐 + 𝜂4𝑇 −

𝑚

∑
𝑖=1

𝜆𝑖,

0𝑛 = 𝜕ℒ(𝑐, 𝒈, 𝑯)
𝜕𝒈 = 2𝜂2𝒈 −

𝑚

∑
𝑖=1

𝜆𝑖 (𝒚𝑖 − 𝒙0) ,

where 0𝑛 = (0, ⋯ , 0)⊤ ∈ ℜ𝑛. Other equations in the KKT conditions are given below.
Taking derivatives of ℒ(𝑐, 𝒈, 𝑯) with respect to the elements of 𝑯 , we obtain

2𝜂1𝑯 − 1
2

𝑚

∑
𝑙=1

𝜆𝑙 (𝒚𝑙 − 𝒙0) (𝒚𝑙 − 𝒙0)
⊤ + 2𝜂3 Diag {𝑇 , ⋯ , 𝑇 } + 𝜂4𝑐𝑰 = 0𝑛𝑛.

Thus,

2𝜂1𝑯 = 1
2

𝑚

∑
𝑖=1

𝜆𝑖 (𝒚𝑖 − 𝒙0) (𝒚𝑖 − 𝒙0)
⊤ − (2𝜂3𝑇 + 𝜂4𝑐) 𝑰. (2-16)

Bymultiplying both sides of (2-16) on the left and right by (𝒚𝑗 − 𝒙0)
⊤ and (𝒚𝑗 − 𝒙0),

we obtain

2𝜂1 (𝒚𝑗 − 𝒙0)
⊤ 𝑯 (𝒚𝑗 − 𝒙0)

= 1
2

𝑚

∑
𝑖=1

𝜆𝑖 [(𝒚𝑖 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0)]
2

− (2𝜂3𝑇 + 𝜂4𝑐) ‖𝒚𝑗 − 𝒙0‖
2
2 , 1 ≤ 𝑗 ≤ 𝑚.
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Furthermore, by multiplying 𝑯 on the left and right by 𝒆⊤
𝑗 and 𝒆𝑗 , where the vector 𝒆𝑗

is defined as the 𝑗-th column of the identity matrix 𝑰 , we obtain

2𝜂1𝒆⊤
𝑗 𝑯𝒆𝑗 = 1

2

𝑚

∑
𝑖=1

𝜆𝑖 [𝒆⊤
𝑗 (𝒚𝑖 − 𝒙0)]

2
− (2𝜂3𝑇 + 𝜂4𝑐) 𝒆⊤

𝑗 𝒆𝑗 , 1 ≤ 𝑗 ≤ 𝑛. (2-17)

By summing (2-17) over 𝑗 = 1, … , 𝑛, we obtain

2𝜂1𝑇 = 1
2

𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝜆𝑙 [𝒆⊤
𝑗 (𝒚𝑖 − 𝒙0)]

2
− 𝑛(2𝜂3𝑇 + 𝜂4𝑐),

which gives

0 = 1
2

𝑚

∑
𝑖=1

𝜆𝑖 ‖𝒚𝑖 − 𝒙0‖
2
2 − (2𝑛𝜂3 + 2𝜂1)𝑇 − 𝑛𝜂4𝑐.

Thus, we obtain the expression of 𝑇 :

𝑇 = 1
2 (2𝑛𝜂3 + 2𝜂1)

𝑚

∑
𝑖=1

𝜆𝑖 ‖𝒚𝑖 − 𝒙0‖
2
2 − 𝑛𝜂4

2𝑛𝜂3 + 2𝜂1
𝑐. (2-18)

Combining with the constraints in (2-13), we obtain the system of equations in terms
of 𝜆𝜆𝜆 = (𝜆1, ⋯ , 𝜆𝑚)⊤, 𝑐, 𝒈:

0 = 2𝜂5𝑐 + 𝜂4
4𝑛𝜂3 + 4𝜂1

𝑚

∑
𝑖=1

𝜆𝑖 ‖𝒚𝑖 − 𝒙0‖
2
2 −

𝑛𝜂2
4

2𝑛𝜂3 + 2𝜂1
𝑐 −

𝑚

∑
𝑖=1

𝜆𝑖,

0𝑛 = 2𝜂2𝒈 −
𝑚

∑
𝑖=1

𝜆𝑖 (𝒚𝑖 − 𝒙0) ,

𝑓 (𝒚𝑗) − 𝑄𝑘−1(𝒚𝑗) = 1
8𝜂1

𝑚

∑
𝑖=1

𝜆𝑖 [(𝒚𝑖 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0)]
2

− 𝜂3
8𝜂1 (𝑛𝜂3 + 𝜂1)

𝑚

∑
𝑖=1

𝜆𝑖 ‖𝒚𝑖 − 𝒙0‖
2
2 ‖𝒚𝑗 − 𝒙0‖

2
2

− 𝜂4
4𝑛𝜂3 + 4𝜂1

𝑐 ‖𝒚𝑗 − 𝒙0‖
2
2 + 𝑐 + (𝒚𝑗 − 𝒙0)

⊤ 𝒈, 𝑗 = 1, ⋯ , 𝑚.

Since at the 𝑘-th iteration, 𝒚𝑡 is replaced by 𝒚new, and 𝑄𝑘(𝒚𝑖) − 𝑄𝑘−1(𝒚𝑖) = 𝑓(𝒚𝑖) −
𝑄𝑘−1(𝒚𝑖), given all 𝒚𝑖 in the current interpolation set, we obtain the system

𝑚+1+𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎛
⎜
⎜
⎜
⎝

𝑨 𝑱 𝑿
𝑱 ⊤ 𝑛𝜂2

4
2𝑛𝜂3+2𝜂1

− 2𝜂5 0⊤
𝑛

𝑿⊤ 0𝑛 −2𝜂2𝑰

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆
𝑐
𝒈

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮
0

𝑓(𝒚new) − 𝑄𝑘−1(𝒚new)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2-19)
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where 𝒚new denotes the new interpolation point, and 𝜆𝜆𝜆 = (𝜆1, ⋯ , 𝜆𝑚)⊤. In addition, the
elements of 𝑨 are given by

𝑨𝑖𝑗 = 1
8𝜂1 [(𝒚𝑖 − 𝒙0)

⊤
(𝒚𝑗 − 𝒙0)]

2
− 𝜂3

8𝜂1 (𝑛𝜂3 + 𝜂1)
‖𝒚𝑖 − 𝒙0‖

2
2 ‖𝒚𝑗 − 𝒙0‖

2
2 ,

for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Furthermore, 𝑿 = (𝒚1 − 𝒙0, 𝒚2 − 𝒙0, ⋯ , 𝒚𝑚 − 𝒙0)
⊤ , and

𝑱 = (1 − 𝜂4
4𝑛𝜂3 + 4𝜂1

‖𝒚1 − 𝒙0‖
2
2 , ⋯ , 1 − 𝜂4

4𝑛𝜂3 + 4𝜂1
‖𝒚𝑚 − 𝒙0‖

2
2)

⊤
.

We call the matrix on the left-hand side of (2-19) the KKT matrix 𝑾 .
Based on the solution of (2-19) for 𝜆𝜆𝜆, 𝑐, 𝒈, we can obtain the quadratic model func-

tion 𝑄(𝒙). In fact, the least Frobenius norm updating quadratic model is a special case
of the least 𝐻2 norm updating quadratic model, as shown below.

Remark 2.3. If 𝐶1 = 𝐶2 = 0, 𝐶3 = 1, then 𝜂1 = 1, 𝜂2 = 𝜂3 = 𝜂4 = 𝜂5 = 0, and the KKT
matrix is

𝑾 =
⎛
⎜
⎜
⎜
⎝

𝑨̄ 𝑬 𝑿
𝑬⊤ 0 0⊤

𝑛
𝑿⊤ 0𝑛 0𝑛𝑛

⎞
⎟
⎟
⎟
⎠

, (2-20)

where 𝑬 ∈ ℜ𝑚 is (1, ⋯ , 1)⊤, and 𝑨̄𝑖𝑗 = 1
8 [(𝒚𝑖 − 𝒙0)

⊤
(𝒚𝑗 − 𝒙0)]

2
, 1 ≤ 𝑖, 𝑗 ≤ 𝑚.

In this case, the Hessian matrix corresponding to the interpolation points 𝒚1, ⋯ , 𝒚𝑚
is

𝑯 = 1
4

𝑚

∑
𝑖=1

𝜆𝑖 (𝒚𝑖 − 𝒙0) (𝒚𝑖 − 𝒙0)
⊤ . (2-21)

The (𝑚 + 𝑛 + 1) × (𝑚 + 𝑛 + 1) matrix in (2-20) is exactly the KKT matrix corresponding
to the least Frobenius norm updating quadratic model [94]. Note that the coefficient 1

4
in (2-21) depends on the coefficients in the Lagrangian function (2-15), but this does
not affect the result.

To reduce computational complexity, we will discuss and use the updating formula
of the inverse of the KKT matrix in what follows. Before discussing the inverse of the
KKTmatrix, we first introduce the following theorem, which gives the condition for the
KKT matrix to be invertible.

Theorem 2.11. The (𝑚 + 𝑛 + 1) × (𝑚 + 𝑛 + 1) matrix 𝑾 is invertible if and only if the
(𝑚 + 1) × (𝑚 + 1) matrix

⎛
⎜
⎜
⎝

𝑨 + 1
2𝜂2

𝑿𝑿⊤ 𝑱

𝑱 ⊤ 𝑛𝜂2
4

2𝑛𝜂3+2𝜂1
− 2𝜂5

⎞
⎟
⎟
⎠

is invertible.
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Proof. We have

⎛
⎜
⎜
⎜
⎝

𝑨 𝑱 𝑿
𝑱 ⊤ 𝑛𝜂2

4
2𝑛𝜂3+2𝜂1

− 2𝜂5 0⊤
𝑛

𝑿⊤ 0𝑛 −2𝜂2𝑰

⎞
⎟
⎟
⎟
⎠

→
⎛
⎜
⎜
⎜
⎝

𝑨 + 1
2𝜂2

𝑿𝑿⊤ 𝑱 𝑿

𝑱 ⊤ 𝑛𝜂2
4

2𝑛𝜂3+2𝜂1
− 2𝜂5 0⊤

𝑛

0𝑛𝑚 0𝑛 −2𝜂2𝑰

⎞
⎟
⎟
⎟
⎠

,

where the arrow denotes elementary transformations. The conclusion then follows.

Theorem 2.11 gives the necessary and sufficient condition for the KKT matrix to
be invertible. In what follows, we refer to the inverse of the KKT matrix simply as the
KKT inverse.

Note that directly solving the KKT system (2-19) at each iteration to obtain the pa-
rameters 𝜆𝜆𝜆, 𝑐, 𝒈 of the quadratic model function is not numerically efficient, with com-
putational complexity 𝒪((𝑚 + 𝑛)3). We attempt to use an updating formula for the KKT
inverse with lower computational complexity. Similar to the discussion given by Powell
[94, 174], a natural question is what happens to the KKT matrix when the interpolation
set is updated. In fact, when the interpolation set is updated, we find that 𝑾 changes
only in its 𝑡-th column and 𝑡-th row, because only 𝒚𝑡 is replaced by 𝒚new. We borrow the
updating formula for the KKT inverse given by Powell [174].

We define a vector 𝜔𝜔𝜔 ∈ ℜ𝑚+𝑛+1 whose components 𝜔𝑖 are given by

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1
8𝜂1 [(𝒚𝑖 − 𝒙0)

⊤
(𝒚new − 𝒙0)]

2
− 𝜂3

8𝜂1 (𝑛𝜂3 + 𝜂1)
‖𝒚𝑖 − 𝒙0‖

2
2 ‖𝒚new − 𝒙0‖

2
2 ,

if 1 ≤ 𝑖 ≤ 𝑚,

1 − 𝜂4
4𝑛𝜂3 + 4𝜂1

‖𝒚new − 𝒙0‖
2
2 , if 𝑖 = 𝑚 + 1,

(𝒚new − 𝒙0)𝑖−𝑚−1 , if 𝑚 + 2 ≤ 𝑖 ≤ 𝑚 + 𝑛 + 1.

If an invertible KKT matrix 𝑾 has its 𝑡-th column and 𝑡-th row replaced respectively
by the vector 𝜔𝜔𝜔 and 𝜔𝜔𝜔⊤, the new matrix is denoted as 𝑾new. Let 𝑽new ∶= 𝑾 −1

new, 𝑽 ∶=
𝑾 −1, then the new KKT inverse is

𝑽new = 𝑽 + 𝜎−1
{𝛼 (𝒆𝑡 − 𝑽 𝜔𝜔𝜔) (𝒆𝑡 − 𝑽 𝜔𝜔𝜔)

⊤ − 𝛽𝑽 𝒆𝑡𝒆⊤
𝑡 𝑽

+𝜏 [𝑽 𝒆𝑡 (𝒆𝑡 − 𝑽 𝜔𝜔𝜔)
⊤ + (𝒆𝑡 − 𝑽 𝜔𝜔𝜔) 𝒆⊤

𝑡 𝑽 ]} ,
(2-22)

where
⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛼 = 𝒆⊤
𝑡 𝑽 𝒆𝑡,

𝛽 = 1
8𝜂1

‖𝒚new − 𝒙0‖
4
2 − 𝜔𝜔𝜔⊤𝑽 𝜔𝜔𝜔,

𝜏 = 𝒆⊤
𝑡 𝑽 𝜔𝜔𝜔,

𝜎 = 𝛼𝛽 + 𝜏2.

(2-23)
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We obtain the new KKT inverse 𝑽new using the updating formula (2-22), and then
compute

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆
𝑐
𝒈

⎞
⎟
⎟
⎟
⎠

= 𝑽new

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮
0

𝑓(𝒚new) − 𝑄𝑘−1(𝒚new)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

to obtain (𝜆𝜆𝜆, 𝑐, 𝒈)⊤. In this case, the update of 𝑽 can be computed within 𝒪((𝑚 + 𝑛)2)
operations.

After presenting the updating formula, we further consider additional details. We at-
tempt to improve the robustness of the updating formula by adopting alternative ways of
selecting new iteration points within the algorithm that uses the least 𝐻2 norm updating
quadratic model (via updating the KKT inverse using (2-22)).

Note that the denominator of the KKT inverse updating formula (2-22) is 𝜎 = 𝛼𝛽 +
𝜏2, where 𝛼, 𝛽, and 𝜏 are given in (2-23). To avoid numerical instability caused by the
absolute value of 𝜎 being too small, we use a model improvement step as Step 4 in
Algorithm 3, i.e., obtain the iteration point 𝒚new = 𝒙opt + 𝒅, where 𝒅 ∈ ℜ𝑛 is obtained
by approximately solving

max
𝒅 |𝛼𝛽 + 𝜏2|

s. t. ‖𝒅‖2 ≤ Δ𝑘.
(2-24)

(2-24) is a quartic problem in 𝒅, since 𝒚new = 𝒙opt + 𝒅. In fact, when the updating for-
mula (2-22) may be unstable due to ill-conditioning of the interpolation set, the model
improvement step in the algorithm based on the least 𝐻2 norm updating quadratic model
is chosen as the solution of the quartic problem above within the trust region. Note that
the current implementation follows the main idea of the BIGDEN subroutine in Pow-
ell’s NEWUOA (Section 6 of [94]) to obtain relatively large values of the objective
function in (2-24) (we do not need to solve it very precisely). The current implemen-
tation attempts to maximize a quadratic approximation (second-order expansion) of the
objective function in (2-24), then iteratively finds trial points, and stops once it finds a
point where the value of (2-24) is 1.1 times the value at 𝒅 = 0. It is worth noting that
since the subproblem itself is not derivative-free, other practical approaches may also
be tried to solve such subproblems, so no further details are given here.

In the current implementation, if 𝜌𝑘 < ̂𝜂1 and the distance between the farthest
interpolation point 𝒚far from 𝒙opt satisfies ‖𝒚far − 𝒙opt‖2 > 2Δ𝑘, the algorithm re-
jects the model and calls the model improvement step, similar to the practice in Pow-
ell’s NEWUOA (related to the well-poisedness of interpolation). In addition, when
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‖𝒙𝑘 − 𝒙0‖2 > 10Δ𝑘, the base point 𝒙0 is changed to the current 𝒙opt, i.e., the center of
the next trust region. For more details, Powell [94] provides detailed discussions on this
point. The updating formula (2-22) reduces the overall computational complexity dur-
ing iterations. More details about the choice of 𝒙0 are introduced in the work of Zhang
[154]. In addition, more details on the geometry and well-poisedness of interpolation
sets can be found in the work of Conn, Scheinberg, and Vicente [175].

2.1.4 Numerical Results

To demonstrate the advantages of our quadratic model updated by the least 𝐻2 norm,
we present numerical results for solving the unconstrained derivative-free optimization
problem (1-1). The numerical experiments consist of three parts: observations and com-
parisons of interpolation errors and updates, a simple simulation, and comparisons via
Performance Profiles and Data Profiles obtained from solving a set of test problems.
Based on the framework provided by Algorithm 3, we implemented a derivative-free
trust-region algorithm in Python for numerical tests. In these tests, the quadratic model
with the least 𝐻2 norm is obtained via the updating formula (2-19), and we use the
formula (2-22) to update the inverse of the KKT matrix. The model-improvement step
in the algorithm is obtained by approximately solving the subproblem (2-24). To di-
rectly and fairly compare different model functions in this section, we keep the al-
gorithmic framework identical and replace the corresponding formulas with those of
other models one by one. In the numerical experiments here, the weights 𝐶1, 𝐶2, 𝐶3
are all set to 1

3 . In addition, in our implementation, the radius 𝑟 at step 𝑘 is set to
max{10Δ𝑘, max

𝒚∈𝒳𝑘
‖𝒚 − 𝒙opt‖2} (this is the same setting as Zhang [154]3). The numerical

results indicate that obtaining the quadratic model via the least 𝐻2 norm update rather
than the least Frobenius norm update is advantageous.

We first make numerical observations on interpolation error and stability when the
quadratic model is updated by minimizing the 𝐻2 norm between two consecutive mod-
els. To illustrate the advantage of using the 𝐻2 norm to obtain the model function, we
use the following example to numerically compare interpolation based on the least 𝐻2

norm update with that based on the least Frobenius norm update.

Example 2.1. We know that the subproblem corresponding to the updating formula
(2-5) can be rewritten as

min
𝐷∈𝒬

‖𝐷‖2
𝐻2(ℬ𝑟(𝒙0))

s. t. 𝐷(𝒚new) = 𝑓(𝒚new) − 𝑄𝑘−1(𝒚new), 𝒚new ∈ 𝒳𝑘,
𝐷(𝒚𝑖) = 0, 𝒚𝑖 ∈ 𝒳𝑘\{𝒚new}

(2-25)

3There are other ways to choose 𝑟. The present choice is simple and sufficient for the numerical experiments.
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to obtain 𝐷𝑘, where 𝐷𝑘 = 𝑄𝑘 −𝑄𝑘−1. Therefore, in this simple 2D example, we assume
that, at the 𝑘-th iteration, the function 𝑓 − 𝑄𝑘−1 in problem (2-25) satisfies

𝑓(𝒙) − 𝑄𝑘−1(𝒙) =
{

1, if 𝒙 = 𝒚new,
0, otherwise.

(2-26)

Remark 2.4. This example is closely related to Lagrange basis functions. Note that,
in the corresponding 𝑘-th iteration, the old point 𝒚𝑡 is replaced by 𝒚new. The function
𝑄𝑘 = 𝑄𝑘−1 + 𝐷𝑘 is exactly the 𝑘-th model; the initial model is 𝑄0(𝒙) = 0. Before
entering the iterations, we set 𝑓((0, 0)⊤) = 1 and 𝑓(𝒙) = 0 for ∀ 𝒙 ≠ (0, 0)⊤, and
then in subsequent steps 𝑓 satisfies (2-26). We use this example to observe the basic
behavior of the models. Powell [176] discusses the advantages of obtaining models
using Lagrange bases.

We use 3 interpolation points at each step. The initial interpolation points for this
simple example are

𝒚1 =
(

0
0)

, 𝒚2 =
(

1
0)

, 𝒚3 =
(

0
1)

,

which is a common choice. The total number of iterations is 3, and the trust region here
is set to ℬ1(𝒙opt), where 𝒙opt is the point with the smallest function value among the
current interpolation points. Here, we focus on and compare the interpolation behavior
of the least Frobenius norm update model and the least 𝐻2 norm update model in the
initial stage. We fix the trust-region radius so that the interpolation errors in the first
three iterations provide a fair and intuitive comparison; note that, for comparison, we
also consider computing interpolation errors on a grid in the region as a simple reference.

Figure 2-1 shows the numerical results. In each subfigure of Figure 2-1, we plot
two curves representing Powell’s model and our model, based on the least Frobenius
norm update and the least 𝐻2 norm update, respectively. Subfigures 2-1a and 2-1b in
Figure 2-1 display the relationships between the number of iterations and the maximum
interpolation error at all iterates as well as the average interpolation error at all iterates.
Subfigures 2-1c and 2-1d in Figure 2-1 show the relationships between the number of
iterations and the maximum interpolation error on grid points as well as the average
interpolation error on grid points. Here, the interpolation error at iterates and the inter-
polation error on grid points are defined respectively by

Erritr(𝒛) = |𝑓(𝒛) − 𝑄𝑘(𝒛)|

and
Errgrid(𝒛𝑝𝑞) = |𝑓(𝒛𝑝𝑞) − 𝑄𝑘(𝒛𝑝𝑞)| ,

where 𝒛 denotes a historical iterate, and 𝒛𝑝𝑞 = ( 𝑝
100 , 𝑞

100)⊤, 𝑝, 𝑞 ∈ [−100, 100] ∩ ℤ.
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The differences in interpolation error in Figure 2-1 illustrate the advantage of our
quadratic model with the least 𝐻2 norm update. During the iterations, our model yields
smaller interpolation errors at the old discarded interpolation points and at grid points
in the region {𝒙 = (𝑥1, 𝑥2)⊤ ∶ 𝑥1, 𝑥2 ∈ [−1, 1]} than the model updated by the least
Frobenius norm. In other words, in this example we observe that the least 𝐻2 norm
update is numerically more stable.
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Figure 2-1 Interpolation error comparison of different interpolation quadratic models

It is worth noting that, in our design here, the target function scales the function value
in the interpolation constraint at 𝒚new to 1, and the target function itself is discontinuous.
Considering that the model function is continuous and that the above setup helps us
make a clear observation under relatively fair and simple conditions, we do not require
the interpolation error here to always be very small. Of course, numerically, smaller
errors are preferable.

The following example further shows the advantage of the least 𝐻2 norm update
quadratic model when iteratively solving a simple and classic test problem.

Example 2.2. The objective function we test is the 2-dimensional Rosenbrock function
[72]

𝑓(𝒙) = 𝑓(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100 (𝑥2 − 𝑥2

1)
2 ,

where 𝑥1 and 𝑥2 denote the first and second components of the variable 𝒙. The initial
interpolation points used in the experiment are the origin and three uniformly distributed
points on the unit circle, namely,

𝒚1 =
(

0
0)

, 𝒚2 =
(

√3
2
1
2

)
, 𝒚3 =

(
−√3

2
1
2

)
, 𝒚4 =

(
0

−1)
,

which is a simple and common setting when using 4 interpolation points in ℜ2. The pur-
pose of this example is to compare the two models from the perspective of minimizing
a classical function. According to Powell [94], we choose the number of interpola-
tion points to be 𝑛 + 2, so that when minimizing an 𝑛-dimensional objective function,
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at least one constraint is provided on the Hessian matrix of the least Frobenius norm
update model; here 𝑛 = 2.

We apply derivative-free trust-region methods based on the least Frobenius norm
update quadratic model and on the least 𝐻2 norm update quadratic model, respectively,
to iteratively minimize the 2D Rosenbrock function. The initial interpolation points are
as above, and the initial trust-region radius is 1. Moreover, the tolerances for the trust-
region radius and the model gradient norm are 10−8, and 𝜇 = 0.1. The parameters for
updating the trust-region radius are 𝛾 = 2, ̂𝜂1 = 1

2 , ̂𝜂2 = 1
4 . Figure 2-2 shows the iteration

results, and details of the numbers of function evaluations, final function values, model
gradient norms, and the best points are given in Table 2-1. NF denotes the number of
function evaluations. It can be seen that, for this example, the algorithm using our model
exhibits faster numerical convergence than the algorithm using the least Frobenius norm
update model, which relies to some extent on the high approximation accuracy of our
model. This experiment shows that, for minimizing the 2D Rosenbrock function, the
least 𝐻2 norm update quadratic model has advantages over the least Frobenius norm
update quadratic model.

Table 2-1 Numbers of function evaluations, final function values, model gradient norms, and
the best points for Example 2.2

Model NF Final 𝑓 value Model grad. norm Best point

Powell 67 3.8630 × 10−9 0.0015 (1.00005607, 1.00011483)⊤

Least 𝐻2 norm update 49 7.8825 × 10−12 7.8587 × 10−6 (1.00000271, 1.00000535)⊤
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Figure 2-2 Convergence plot of minimizing 2-dimensional Rosenbrock function based on Pow-
ell’s least Frobenius norm updating model and our least 𝐻2 norm updating model

In addition, we conducted further numerical experiments for the algorithm based on
our quadratic model updated by the least 𝐻2 norm in order to investigate the effect of
“using different numbers of interpolation points,” i.e., we set 𝑚 to be from 1 to 1

2(𝑛 +
1)(𝑛 + 2). Table 2-2 reports the numbers of function evaluations when minimizing the
2D Rosenbrock function using the least 𝐻2 norm update quadratic model with different
numbers of interpolation points. The other settings are the same as before.
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Table 2-2 Minimizing Rosenbrock function with different number of interpolation points

Initial interpolation points NF

(0, 0)⊤ - - - - - 56
(0, 0)⊤ (1, 0)⊤ - - - - 58
(0, 0)⊤ (1, 0)⊤ (0, 1)⊤ - - - 60
(0, 0)⊤ (√3

2 , 1
2)⊤ (−√3

2 , 1
2)⊤ (0, −1)⊤ - - 49

(0, 0)⊤ (1, 0)⊤ (0, 1)⊤ (−1, 0)⊤ (0, −1)⊤ - 61
(0, 0)⊤ (1, 0)⊤ (0, 1)⊤ (−1, 0)⊤ (0, −1)⊤ (√2

2 , −√2
2 )⊤ 63

The main considerations regarding the optimal number of interpolation points per
iteration are as follows: fewer interpolation points entail lower computational cost and
may, under the guarantee of the projection property in Theorem 2.4, provide a better
update. This is because, when solving problem (2-5) to obtain 𝑄𝑘, having fewer inter-
polation constraints can make ‖𝑄𝑘 − 𝑄𝑘−1‖𝐻2(Ω) smaller. Note that the comparison
here is made in the sense of different numbers of interpolation conditions. In addition,
the number of interpolation points can also be chosen dynamically according to the ac-
curacy required during the optimization process.

There is still room for improvement in our method. For example, changing the rel-
evant parameters in the algorithm (such as the coefficients 𝐶1, 𝐶2, 𝐶3 and the number
of interpolation points) may lead to different outcomes. Below we present an exam-
ple in which the least Frobenius norm update quadratic model performs better than the
least 𝐻2 norm update quadratic model, indicating that the least Frobenius norm update
model can be numerically preferable in some situations.

Example 2.3. In this example, we attempt to minimize the test function “DQRTIC”
[177], whose expression is

𝑓(𝒙) = 𝑓(𝑥1, 𝑥2) = (𝑥1 − 1)
4 + (𝑥2 − 2)

4 .

The global minimum of this example is 0. We fix the trust-region radius at 1. The initial
interpolation points 𝒚1, 𝒚2, 𝒚3, 𝒚4, 𝒚5 (we use 5 interpolation points at each iteration) are

𝒚1 =
(

−20
1 )

, 𝒚2 =
(

−19
1 )

, 𝒚3 =
(

−20
2 )

, 𝒚4 =
(

−21
1 )

, 𝒚5 =
(

−20
0 )

.

The best function values over the first 16 function evaluations are shown in Figure 2-3.
In this example, Powell’s model performs better than ours, especially between the 10-th
and 16-th evaluations, achieving function values 2.08 × 104 and 8.38 × 104 respectively
at the 16-th evaluation.
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Figure 2-3 Minimizing 2-dimensional DQRTIC function based on Powell’s least Frobenius
norm updating model and our least 𝐻2 norm updating model

To further examine the numerical performance of our algorithm based on the quadratic
model updated by the least𝐻2 norm, we solve some classic test problems and present the
results using Performance Profiles and Data Profiles. The test problems corresponding
to the Performance Profiles in Figure 2-4 and the Data Profiles in Figure 2-5 are listed
in Table 2-3. They are all selected from classic and commonly used unconstrained
optimization test function sets, and the objective functions in the tested optimization
problems are smooth. For the Performance and Data Profiles, the stopping criterion
regarding the number of function evaluations for all tested algorithms is set to at most
100𝑛 evaluations, where 𝑛 is the dimension of the corresponding problem. Here, 𝒙int de-
notes the starting point, and 𝒙∗ denotes the best known point (obtained in the numerical
comparisons).

Table 2-3 50 test problems for Figure 2-4 and Figure 2-5

Problem Dimension 𝑓(𝒙int) 𝑓 (𝒙∗)

ARGLINA [177, 178] 8 4.00 × 101 8.00
ARGLINB [177, 178] 10 8.66 × 106 4.63
ARGTRIG [177] 8 8.45 × 10−3 5.01 × 10−14

BDQRTIC [177] 100 2.17 × 104 3.79 × 102

BDVALUE [177, 178] 100 1.23 × 10−6 9.33 × 10−7

BRYBND [177, 178] 180 6.48 × 103 1.44 × 10−9

CHAINWOO [177, 179] 140 5.16 × 105 2.98 × 102

CHEBQUAD [177, 178] 120 1.75 × 10−2 6.56 × 10−3

CHNROSNB [177, 180] 80 1.61 × 103 3.52 × 10−11

CHPOWELLS [178, 181] 20 1.10 × 103 5.52 × 10−10

COSINE [177] 90 7.81 × 101 −8.90 × 101

CUBE [177] 50 3.02 × 104 3.51 × 10−3

CURLY10 [177] 10 −5.06 × 10−5 −1.00 × 103

41



Algorithms and Theory of Derivative-Free Optimization

Table 2-3 (continued)

CURLY20 [177] 20 −1.01 × 10−4 −2.01 × 103

CURLY30 [177] 30 −1.52 × 10−4 −3.01 × 103

DIXMAANE [177] 60 4.45 × 102 1.00
DIXMAANF [177] 65 4.70 × 102 1.00
DIXMAANG [177] 70 8.81 × 102 1.00
DIXMAANH [177] 75 1.82 × 103 1.00
DIXMAANI [177] 80 5.26 × 102 1.00
DIXMAANJ [177] 85 5.65 × 102 1.00
DIXMAANK [177] 90 1.08 × 103 1.00
DIXMAANL [177] 95 2.19 × 103 1.00
DIXMAANM [177] 100 3.14 × 102 1.00
DIXMAANN [177] 105 3.33 × 102 1.00
DIXMAANO [177] 120 5.96 × 102 1.00
DIXMAANP [177] 130 1.14 × 103 1.00
DQRTIC [177] 110 3.01 × 109 4.76 × 10−6

ERRINROS [177] 170 5.39 × 105 1.34 × 102

EXPSUM [182] 175 1.80 × 106 8.03 × 103

EXTROSNB [177, 180] 180 7.16 × 104 8.33 × 10−4

FLETCHCR [177] 165 1.64 × 104 4.05 × 10−2

FREUROTH [177, 178] 100 9.96 × 104 1.08 × 104

GENROSE [177] 130 5.14 × 102 1.18 × 102

INTEGREQ [177, 178] 110 6.30 × 10−1 3.84 × 10−12

MOREBV [177, 178] 8 1.37 × 10−3 6.50 × 10−14

NCB20 [177] 175 5.47 × 103 2.81 × 102

NONDQUAR [177] 160 1.66 × 102 2.88 × 10−4

POWELLSG [177, 178] 180 9.68 × 103 1.89 × 10−3

POWER [177] 135 8.29 × 105 3.78 × 10−20

ROSENBROCK [177, 178] 10 3.64 × 103 4.69 × 10−7

SBRYBND [177, 178] 50 7.68 × 102 1.98 × 101

SCOSINE [177] 180 1.03 × 101 −5.45 × 101

SPARSINE [177] 160 5.33 × 104 1.47 × 10−5

SPMSRTLS [177] 180 1.30 × 102 9.84 × 10−11

SROSENBR [177, 178] 8 9.68 × 101 4.58 × 10−2

TOINTGSS [177] 100 8.92 × 102 9.71
TQUARTIC [177] 20 8.10 × 10−1 1.12 × 10−12

WOODS [177, 178] 24 1.15 × 105 2.45 × 101

VARDIM [177, 178] 180 1.41 × 1016 4.15
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Based on the numerical results of the above interpolation error and simple examples,
the least 𝐻2 norm updating quadratic model function performs better for Example 2.1
and Example 2.2. The following numerical results will show that, for the tested problem
set, the algorithm using ourmodel converges faster and performs better numerically than
the algorithm using the least Frobenius norm updating quadratic model.

For each problem in this experiment, all algorithms start from the same input point
𝒙int, and the accuracy 𝜏 is set to 10−1, 10−3, and 10−5. The algorithm framework
is shown in Algorithm 3, where “Powell” denotes the least Frobenius norm updating
quadratic model of Powell. Here, for the algorithm using Powell’s least Frobenius norm
updating quadratic model, the number of interpolation points per iteration is 𝑚 = 2𝑛+1.
“𝐻2 (𝑚 = 2𝑛 + 1)” and “𝐻2 (𝑚 = ⌈𝑛

2⌉ + 1)” both use the least 𝐻2 norm updating
quadratic model and share the same framework as “Powell”. For the three algorithms
in Figure 2-4, the tolerances of the trust-region radius and gradient norm are set to
10−8. They share the same initial trust-region radius. In Algorithm 3, the parameters
are 𝛾 = 2, ̂𝜂1 = 1

2 , ̂𝜂2 = 1
4 , 𝜇 = 0.1. For a fair comparison with other quadratic models,

the methods “Powell” and “𝐻2 (𝑚 = 2𝑛+1)” use 2𝑛+1 interpolation points per iteration
and share the same initial interpolation points 𝒙int, 𝒙int ± 𝒆𝑖, 𝑖 = 1, ⋯ , 𝑛. In addition,
the method “𝐻2 (𝑚 = ⌈𝑛

2⌉ + 1)” uses ⌈𝑛
2⌉ + 1 interpolation points per iteration, with

initial interpolation points 𝒙int, 𝒙int + 𝒆𝑗 , 𝑗 = 1, ⋯ , ⌈𝑛
2⌉ + 1.

In fact, choosing different 𝑚 for different problems yields different numerical per-
formance. Considering that the least 𝐻2 norm updating quadratic model has already
reduced the lower bound of the number of interpolation points per step, this is worth
further study in the future. The performance of “𝐻2 (𝑚 = ⌈𝑛

2⌉ + 1)” can demonstrate
the numerical advantage of ourmethod andmodel when using fewer interpolation points
per iteration.
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Figure 2-4 Performance Profile of solving test problems with derivative-free trust-region algo-
rithms based on different quadratic models

In Figure 2-4, the results of 𝜌𝑎(1) show that the algorithm based on the least 𝐻2

norm updating quadratic model with 𝑚 = ⌈𝑛
2⌉ + 1 can solve the most problems with the

fewest function evaluations among the three cases shown. The two algorithms using the

43



Algorithms and Theory of Derivative-Free Optimization

least 𝐻2 norm updating quadratic model perform better than the algorithm using the
least Frobenius norm updating quadratic model on this test set.

To further numerically observe the overall performance of our algorithm based on
the least 𝐻2 norm updating quadratic model, we present below the numerical compari-
son results between our model-based algorithm and other algorithms using Data Profile.
The derivative-free trust-region algorithms tested with Powell’s model (least Frobenius
norm updating quadratic model) and the least Frobenius norm quadratic model [160] are
respectively the Python interface of NEWUOA in PDFO [142] [94] and a Python im-
plementation of the DFO algorithm4. In addition, the Nelder-Mead simplex algorithm
and the BFGS method using first-order finite-difference derivative approximations are
obtained from the scipy.optimize library5.

For each problem in the experiment, all algorithms start from the input point 𝒙int of
the problem, and the accuracy 𝜏 is set to 10−1, 10−3, and 10−5. We keep the settings of
the methods “𝐻2 (𝑚 = 2𝑛 + 1)” and “𝐻2 (𝑚 = ⌈𝑛

2⌉ + 1)” the same as those in Section
2.1.4. “𝐻1 (𝑚 = 2𝑛 + 1)” shares the same algorithm framework and settings with our
model, but it uses the least 𝐻1 seminorm quadratic model, namely the combination of
the classical ‖∇2𝑄‖

2
𝐹 and ‖∇𝑄‖2

2. For the trust-region algorithms “NEWUOA” and
“DFO-py” in Figure 2-5, the tolerances of the trust-region radius and gradient norm
are set to 10−8. They share the same initial trust-region radius. In addition, in our
numerical experiments, the trust-regionmethods “NEWUOA” and “DFO-py” use 2𝑛+1
interpolation points per iteration, and share the same initial interpolation points with
“𝐻2 (𝑚 = 2𝑛 + 1)”. For “Nelder-Mead-py”, the initial simplex is an 𝑛 + 1 dimensional
simplex with vertices 𝒙int, 𝒙int + 𝒆𝑖, 𝑖 = 1, ⋯ , 𝑛, and the absolute error tolerance of
function values between iterations is set to 10−8. For “BFGS”, the relative step size for
numerical gradient approximation is automatically selected by setting it to “None”, and
the corresponding gradient norm must be less than 10−8 before successful termination.
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Figure 2-5 Data Profile of solving test problems with different algorithms

We can observe from Figure 2-5 that the trust-region algorithms based on the least
𝐻2 norm updating quadratic model functions perform better than the other algorithms.

4https://coral.ise.lehigh.edu/katyas/software
5https://docs.scipy.org/doc/scipy
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More specifically, when 𝛽 exceeds about 40, in the case of 𝜏 = 10−1, they can solve
more than 60% of the problems. The method using the model with 𝑚 = ⌈𝑛

2⌉ + 1 in-
terpolation conditions per iteration performs better than the other methods. The above
results demonstrate the advantage of the algorithm using our model.

2.1.5 Summary

For derivative-free trust-region optimization methods, using underdetermined quadratic
interpolation models can reduce the number of interpolation points and function evalua-
tions to some extent. To obtain a unique quadratic model function, a common approach
is to determine the coefficients of the quadratic function at each iteration by solving
an optimization problem with interpolation conditions as constraints. This section at-
tempts to obtain the quadratic model function by minimizing the 𝐻2 norm of the differ-
ence between the new and old quadratic model functions during the iteration. We find
that this can reasonably reduce the lower bound of the number of interpolation points
or equations. We presented the projection property and error bounds, and derived the
corresponding updating formulas for computing the model function coefficients based
on the KKT conditions of the corresponding optimization problem. Based on solving
the KKT system (2-19) and formula (2-22), we obtained the updating formula for the
inverse KKT matrix, providing more choices for underdetermined least norm updat-
ing quadratic models. Numerical results from different perspectives indicate the good
performance of our model-based algorithm.

Regarding future work, we can further study and develop more convergence prop-
erties of derivative-free trust-region algorithms based on the least 𝐻2 norm updating
quadratic model. We can also design adaptive weight coefficients for problems with
different structures, and obtain the quadratic model function at the 𝑘-th iteration by
minimizing

𝐶 (𝑘)
1 ‖𝑄 − 𝑄𝑘−1‖

2
𝐻0(Ω) + 𝐶 (𝑘)

2 |𝑄 − 𝑄𝑘−1|
2
𝐻1(Ω) + 𝐶 (𝑘)

3 |𝑄 − 𝑄𝑘−1|
2
𝐻2(Ω)

where 𝑘 corresponds to the 𝑘-th iteration. Another potential future work is to find bet-
ter choices for the number of interpolation points used in constructing the model at
each iteration, since we have now reduced the lower bound of this number. As shown
in Section 2.1.4 (especially Example 2.3), our model still has limitations, so finding
deeper relationships between performance and coefficients or the number of interpola-
tion points will be valuable. Other different types of derivative-free optimization inter-
polationmodels can also be further studied, including underdeterminedmodel functions
suitable for large-scale sparse derivative-free optimization problems, as well as models
suitable for solving optimization problems with nonlinear or linear constraints.
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2.2 Least Weighted 𝐻2 Norm Updating Quadratic Interpolation Model

This section further discusses the least weighted 𝐻2 norm updating quadratic interpola-
tion model based on the previous section, and applies it to model-based derivative-free
trust-region methods. The least weighted 𝐻2 norm updating quadratic interpolation
model here refers to the solution obtained by solving subproblem (2-6). It is worth
noting that in model-based derivative-free trust-region methods, as the number of iter-
ations increases, the trust-region radius will converge to 0. This section will focus on
this situation. At the same time, this situation also applies to numerical computation in
high-precision environments.

Specifically, this section focuses on the least weighted 𝐻2 norm updating quadratic
model and its corresponding KKT matrix, defines new distance and error measures
called KKT matrix distance and KKT matrix error, respectively; gives the definition
of the barycenter of the coefficient region, and provides the analytical barycenter of the
weight coefficient region of the least weighted 𝐻2 norm updating quadratic model; and
finally provides numerical support for the best choice of weight coefficient region.

The remainder of this section is organized as follows. Section 2.2.1 gives more de-
tails of the least weighted 𝐻2 norm updating quadratic model and the KKT matrix,
showing the corresponding results when the radius 𝑟 used in computing the 𝐻2 norm
converges to 0. In addition, Section 2.2.2 proposes new distance and error measures,
called KKT matrix distance and KKT matrix error, to illustrate the differences in the
KKT matrix caused by different weight coefficients. This section also gives the defi-
nition of the barycenter of the coefficient region. Section 2.2.3 gives the barycenter of
the weight coefficient region of the least weighted 𝐻2 norm updating quadratic model
when the trust-region radius is small. Section 2.2.4 presents the numerical performance
comparison results for different weight coefficients.

2.2.1 Least Weighted 𝐻2 Norm Updating Quadratic Model and KKT Matrix

According to the previous discussion, the coefficient 𝑟 is usually proportional to the
trust-region radius and the maximum distance between the interpolation points and the
current trust-region center in the iteration, where the latter is proportional to the trust-
region radius. Therefore, 𝑟 → 0 corresponds to the case of a small trust-region radius.

Note that we rewrite 𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5 in (2-14) as function forms:

𝜂1(𝐶1, 𝐶2, 𝐶3, 𝑛, 𝑟), 𝜂2(𝐶1, 𝐶2, 𝑛, 𝑟), 𝜂3(𝐶1, 𝑛, 𝑟), 𝜂4(𝐶1, 𝑛, 𝑟), 𝜂5(𝐶1).

Some results of the parameters of the KKT matrix 𝑾 in the limit case of a small
trust-region radius are given in the following proposition.
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Proposition 2.12. 𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5 satisfy

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

lim
𝑟→0

𝜂1(𝐶1, 𝐶2, 𝐶3, 𝑛, 𝑟) = 𝐶3,

lim
𝑟→0

𝜂2(𝐶1, 𝐶2, 𝑛, 𝑟) = 𝐶2,

lim
𝑟→0

𝜂3(𝐶1, 𝑛, 𝑟) = 0,

lim
𝑟→0

𝜂4(𝐶1, 𝑛, 𝑟) = 0,

lim
𝑟→0

𝜂5(𝐶1) = 𝐶1,

(2-27)

then
⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

lim
𝑟→0

1
8𝜂1

= 1
8𝐶3

,

lim
𝑟→0

− 𝜂3
8𝜂1 (𝑛𝜂3 + 𝜂1)

= 0,

lim
𝑟→0

− 𝜂4
4𝑛𝜂3 + 4𝜂1

= 0,

lim
𝑟→0

−2𝜂2 = −2𝐶2,

lim
𝑟→0

𝑛𝜂2
4

2𝑛𝜂3 + 2𝜂1
− 2𝜂5 = −2𝐶1.

Proof. The result can be obtained by direct calculation.

2.2.2 KKT Matrix Error and the Barycenter of the Coefficient Region

We know that computing the corresponding parameters 𝜆𝜆𝜆, 𝑐, 𝒈 based on given 𝐶1 and
𝐶2 yields the least weighted 𝐻2 norm updating quadratic model. Since 𝜆𝜆𝜆, 𝑐, 𝒈 de-
pend directly on the KKT matrix 𝑾 in the KKT system (2-19), we attempt to char-
acterize the distance between two models using a KKT matrix distance; see Definition
2.16. Specifically, as shown in the KKT system (2-19), the vector (0, ⋯ , 0, 𝑓 (𝒚new) −
𝑄𝑘−1(𝒚new), 0, ⋯ , 0)⊤ remains unchanged for different weight coefficients, while the
only difference lies in the KKT matrix 𝑾 on the left-hand side of (2-19). This KKT
matrix 𝑾 directly determines the parameters of our quadratic model and thereby the
least weighted 𝐻2 norm updating quadratic model associated with it. Therefore, the
KKT matrix can sufficiently represent the differences among models obtained by min-
imizing the weighted 𝐻2 norm with different weight coefficients. In other words, the
KKT matrix is, in a certain sense, key to measuring the quality of the corresponding
quadratic model.

This subsection seeks a “balance point” for the above weight coefficients. Our aim
is to identify a central KKT matrix by giving the barycenter of the weight-coefficient
region, in order to find optimal coefficients in this sense.

47



Algorithms and Theory of Derivative-Free Optimization

Remark 2.5. Without loss of generality, we assume 𝐶1 + 𝐶2 + 𝐶3 = 1. This does not
affect our discussion of the weight coefficients.

The analysis below is conducted under the following assumption.
Assumption 2.13. 𝑾 and 𝑾 ∗ are the KKT matrices corresponding to the model func-
tions determined by (2-19) with weight coefficients 𝐶1, 𝐶2 and 𝐶∗

1 , 𝐶∗
2 , respectively.

We have the following theorem.

Theorem 2.14. Assume that 𝑾 and 𝑾 ∗ satisfy Assumption 2.13. Then ‖𝑾 − 𝑾 ∗‖
2
𝐹

equals

‖𝑾 − 𝑾 ∗‖
2
𝐹 =

⎧⎪
⎨
⎪⎩

𝑚

∑
𝑖=1

𝑚

∑
𝑗=1

[(𝒚𝑖 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0)]
4⎫⎪
⎬
⎪⎭

(
1

8𝜂1
− 1

8𝜂∗
1 )

2

+
⎛
⎜
⎜
⎝

𝑚

∑
𝑖=1

𝑚

∑
𝑗=1

‖𝒚𝑖 − 𝒙0‖
4
2 ‖𝒚𝑗 − 𝒙0‖

4
2

⎞
⎟
⎟
⎠

(
𝜂3

8𝜂1 (𝑛𝜂3 + 𝜂1)
−

𝜂∗
3

8𝜂∗
1 (𝑛𝜂∗

3 + 𝜂∗
1))

2

+
(

𝑚

∑
𝑖=1

‖𝒚𝑖 − 𝒙0‖
4
2) [− 𝜂4

4𝑛𝜂3 + 4𝜂1
− (−

𝜂∗
4

4𝑛𝜂∗
3 + 4𝜂∗

1 )]

2

+ 𝑛 [2 (𝜂∗
2 − 𝜂2)]

2 +
[

𝑛𝜂2
4

2𝑛𝜂3 + 2𝜂1
− 2𝜂5 −

(
𝑛(𝜂∗

4)2

2𝑛𝜂∗
3 + 2𝜂∗

1
− 2𝜂∗

5)]

2

,

where 𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5 are defined by (2-14), and 𝜂∗
1 , 𝜂∗

2 , 𝜂∗
3 , 𝜂∗

4 , 𝜂∗
5 are

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜂∗
1 = 𝐶∗

1
𝑟4

2(𝑛 + 4)(𝑛 + 2) + 𝐶∗
2

𝑟2

𝑛 + 2 + 𝐶∗
3 ,

𝜂∗
2 = 𝐶∗

1
𝑟2

𝑛 + 2 + 𝐶∗
2 ,

𝜂∗
3 = 𝐶∗

1
𝑟4

4(𝑛 + 4)(𝑛 + 2),

𝜂∗
4 = 𝐶∗

1
𝑟2

𝑛 + 2,

𝜂∗
5 = 𝐶∗

1 .
Proof. Computing 𝑨 − 𝑨∗, 𝑱 − 𝑱 ∗, and 𝑿 − 𝑿∗, and then summing the squares yields
the result.

Moreover, we can obtain the following corollary for ‖𝑾 − 𝑾 ∗‖2
𝐹 .

Corollary 2.15. Assume that 𝑾 and 𝑾 ∗ satisfy Assumption 2.13. Then ‖𝑾 − 𝑾 ∗‖
2
𝐹

is a function of 𝐶1, 𝐶2, 𝐶∗
1 , 𝐶∗

2 , 𝑛, 𝑟, and we have

‖𝑾 − 𝑾 ∗‖
2
𝐹 ∶= 𝒟(𝐶1, 𝐶2, 𝐶∗

1 , 𝐶∗
2 , 𝑛, 𝑟)

= ℛ1(𝒚1, ⋯ , 𝒚𝑚)𝒫1(𝐶1, 𝐶2, 𝐶∗
1 , 𝐶∗

2 , 𝑛, 𝑟) + ℛ2(𝒚1, ⋯ , 𝒚𝑚)𝒫2(𝐶1, 𝐶2, 𝐶∗
1 , 𝐶∗

2 , 𝑛, 𝑟)
+ ℛ3(𝒚1, ⋯ , 𝒚𝑚)𝒫3(𝐶1, 𝐶2, 𝐶∗

1 , 𝐶∗
2 , 𝑛, 𝑟) + 𝒫4(𝐶1, 𝐶2, 𝐶∗

1 , 𝐶∗
2 , 𝑛, 𝑟),

(2-28)

48



Chapter 2 Improvements to Quadratic Interpolation Models in Derivative-Free Trust-Region Algorithms

where
⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

ℛ1(𝒚1, ⋯ , 𝒚𝑚) =
𝑚

∑
𝑖=1

𝑚

∑
𝑗=1

[(𝒚𝑖 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0)]
4

,

ℛ2(𝒚1, ⋯ , 𝒚𝑚) =
𝑚

∑
𝑖=1

𝑚

∑
𝑗=1

‖𝒚𝑖 − 𝒙0‖
4
2 ‖𝒚𝑗 − 𝒙0‖

4
2 ,

ℛ3(𝒚1, ⋯ , 𝒚𝑚) =
𝑚

∑
𝑖=1

‖𝒚𝑖 − 𝒙0‖
4
2

depend only on the interpolation points 𝒚1, ⋯ , 𝒚𝑚 given the current base point 𝒙0 of the
iteration, and 𝒫1, 𝒫2, 𝒫3, 𝒫4 are functions of 𝐶1, 𝐶2, 𝐶∗

1 , 𝐶∗
2 , 𝑛, 𝑟, whose explicit expres-

sions will be given later.

Proof. Substituting the expressions of 𝜂1, 𝜂2, 𝜂3, 𝜂4, 𝜂5 and 𝜂∗
1 , 𝜂∗

2 , 𝜂∗
3 , 𝜂∗

4 , 𝜂∗
5 yields (2-

28).

To further discuss the central KKT matrix, we first introduce the definitions of the
KKT matrix distance and KKT matrix error.

Definition 2.16 (KKT matrix distance). We define the KKT matrix distance between
two KKT matrices 𝑾 and 𝑾 ∗ as ‖𝑾 − 𝑾 ∗‖𝐹 .

Theorem 2.17. The KKT matrix distance in Definition 2.16 is a well-defined distance
on the set of KKT matrices.

Proof. We have the following facts.
- The KKT matrix distance is nonnegative, and ‖𝑾 − 𝑾 ∗‖𝐹 = 0 if and only if

𝑾 = 𝑾 ∗.
- Symmetry holds: ‖𝑾 − 𝑾 ∗‖𝐹 = ‖𝑾 ∗ − 𝑾 ‖𝐹 .
- The triangle inequality

‖𝑾 − 𝑾̄ ∗‖𝐹 = ‖(𝑾 − 𝑾 ∗) + (𝑾 ∗ − 𝑾̄ ∗)‖𝐹 ≤ ‖𝑾 − 𝑾 ∗‖𝐹 + ‖𝑾 ∗ − 𝑾̄ ∗‖𝐹 .

Therefore, the KKT matrix distance is a well-defined distance.

Definition 2.18 (KKT matrix error). Assume that 𝑾 and 𝑾 ∗ satisfy Assumption 2.13.
We define the KKT matrix error between two sets of weight coefficients (𝐶1, 𝐶2) and
(𝐶∗

1 , 𝐶∗
2 ) as√𝒟(𝐶1, 𝐶2, 𝐶∗

1 , 𝐶∗
2 , 𝑛, 𝑟), where𝒟(𝐶1, 𝐶2, 𝐶∗

1 , 𝐶∗
2 , 𝑛, 𝑟) is defined in (2-28).

Wewill use the KKTmatrix error to help find appropriate weight coefficients 𝐶1, 𝐶2
and 𝐶3 = 1 − 𝐶1 − 𝐶2, where (𝐶1, 𝐶2)⊤ lies in the region 𝒞. Figure 2-6 shows the
coefficient region 𝒞. To avoid a too small denominator 𝜂1 in the KKT matrix of (2-19)
when 𝑟 → 0, we assume in our analysis that 𝐶3 has a lower bound 𝜀 with 0 < 𝜀 < 1.

To further introduce the average KKT matrix distance, we give the following defi-
nition.
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𝐶1

𝐶2

(1 − 𝜀, 0)

(0, 1 − 𝜀)

(0, 0)

Figure 2-6 Coefficient region 𝒞

Definition 2.19 (Average squared KKT matrix error). Consider (2-28). Given a pair of
coefficients 𝐶1 and 𝐶2, we define the average squared KKT matrix error as

Errorave(𝐶1, 𝐶2, 𝑛, 𝑟, 𝜀) ∶=
∫1−𝜀−𝐶∗

1
0 ∫1−𝜀

0 𝒟(𝐶1, 𝐶2, 𝐶∗
1 , 𝐶∗

2 , 𝑛, 𝑟)𝑑𝐶∗
1 𝑑𝐶∗

2

∫1−𝜀−𝐶1
0 ∫1−𝜀

0 1𝑑𝐶∗
1 𝑑𝐶∗

2

=
2∫1−𝜀−𝐶∗

1
0 ∫1−𝜀

0 𝒟(𝐶1, 𝐶2, 𝐶∗
1 , 𝐶∗

2 , 𝑛, 𝑟)𝑑𝐶∗
1 𝑑𝐶∗

2
(1 − 𝜀)2 .

Definition 2.20 (Barycenter of the coefficient region). The barycenter of the weight-
coefficient region 𝒞 for the least weighted 𝐻2 norm updating quadratic model is the
solution of

min
(𝐶1,𝐶2)⊤∈𝒞

Errorave(𝐶1, 𝐶2, 𝑛, 𝑟, 𝜀). (2-29)

The barycenter of the weight-coefficient region 𝒞 has the smallest average squared
KKT matrix error. Note that the measure here is the KKT matrix error (rather than
Euclidean distance).

2.2.3 Barycenter of the Weight Coefficient Region of Least Weighted 𝐻2 Norm
Updating Quadratic Models

This subsection provides an analytic result for the barycenter of the weight-coefficient
region of the least weighted 𝐻2 norm updating quadratic model when the trust-region
radius is small.

Theorem 2.21. Given the lower bound 𝜀 of 𝐶3, if 𝑟 → 0, then

lim
𝑟→0

Errorave(𝐶1, 𝐶2, 𝑛, 𝑟, 𝜀) = ℛ1(𝒚1, ⋯ , 𝒚𝑚)Error(1)
ave(𝐶1, 𝐶2, 𝜀) + Error(2)

ave(𝐶1, 𝐶2, 𝑛, 𝜀),

where Error(1)
ave(𝐶1, 𝐶2, 𝜀) is

(𝜀−1)(𝜀(4𝐶1+4𝐶2−5)−2(𝐶1+𝐶2−1)2+𝜀2
)

2𝜀 + (𝐶1 + 𝐶2 − 3)(𝐶1 + 𝐶2 − 1)ln(𝜀)
32(1 − 𝜀)2(𝐶1 + 𝐶2 − 1)2 ,
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and Error(2)
ave(𝐶1, 𝐶2, 𝑛, 𝜀) is

1
6 (24𝐶1

2 + 16𝐶1(𝜀 − 1) + 6𝐶2
2𝑛 + 𝜀(4𝐶2𝑛 − 2𝑛 − 8) − 4𝐶2𝑛 + 𝜀2(𝑛 + 4) + 𝑛 + 4) .

Proof. The result follows by directly computing the integrals and the limit.

Next, we obtain the following result.

Theorem 2.22. If ℛ1(𝒚1, ⋯ , 𝒚𝑚) → 0, then 𝐶1 = 1−𝜀
3 , 𝐶2 = 1−𝜀

3 corresponds to the
weight coefficients that provide the central KKT matrix.

Proof. We have

lim
ℛ1(𝒚1,⋯,𝒚𝑚)→0

Errorave(𝐶1, 𝐶2, 𝑛, 𝑟, 𝜀) = Error(2)
ave(𝐶1, 𝐶2, 𝑛, 𝑟, 𝜀) (2-30)

and

(
1 − 𝜀

3 , 1 − 𝜀
3 )

⊤
= arg min

(𝐶1,𝐶2)⊤∈𝒞
Error(2)

ave(𝐶1, 𝐶2, 𝑛, 𝜀). (2-31)

Therefore, the conclusion holds.

We now give a numerical example.

Example 2.4. For 𝜀 = 0.01 and 𝑛 = 100, we list the values of Error(1)
ave and Error(2)

ave
corresponding to sampled weight coefficients when the trust-region radius is small.

Table 2-4 Values of Error(1)
ave and Error(2)

ave for sampled weight coefficients, 𝜀 = 0.01, 𝑛 = 100

(𝐶1, 𝐶2)⊤ (1−𝜀
3 , 1−𝜀

3 )⊤ (1
2 − 𝜀, 1

2)⊤ (0, 1
2)⊤ (1 − 𝜀, 0)⊤ (0, 1 − 𝜀)⊤ (0, 0)⊤

Error(1)
ave 5.663 8.655 8.988 18.3 49.66 16.99

Error(2)
ave 2.467 136.2 2.611 136.2 136.2 2.795

Table 2-4 numerically indicates that (1−𝜀
3 , 1−𝜀

3 )⊤ achieves the smallest Errorave among
the six pairs of weight coefficients.

Note that, ideally, the lower bound 𝜀 of 𝐶3 tends to 0. As a limiting result of Theorem
2.22, the optimal weight coefficients are 𝐶1 = 1

3 , 𝐶2 = 1
3 , 𝐶3 = 1

3 .

2.2.4 Numerical Results

We present the following numerical example by using the different models described
above within Algorithm 3.
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Example 2.5. In this numerical example, we use a derivative-free algorithm based on
the least weighted𝐻2 norm updating quadraticmodel (constructedwith different weight
coefficients) to minimize the 2D Rosenbrock function

𝑓(𝒙) = (1 − 𝑥1)
2 + 100 (𝑥2 − 𝑥2

1)
2 , (2-32)

which is a smooth nonconvex function (as mentioned earlier), and 𝒙 = (𝑥1, 𝑥2)⊤. The
global minimizer of the test problem is 0, attained at (1, 1)⊤.

In the experiment, the initial input point is set as 𝒙int = (1.04, 1.1)⊤. In each itera-
tion, we use 5 points for interpolation. The maximum number of function evaluations
is uniformly set to 16, and the initial trust-region radius is Δ0 = 10−4. In addition, the
tolerances for the trust-region radius, the function value, and the gradient norm are all
set to 10−8. The parameters in Algorithm 3 are 𝛾 = 2, ̂𝜂1 = 1

4 , ̂𝜂2 = 3
4 , and 𝜇 = 0.1. The

initial interpolation points are 𝒙int, 𝒙int ± (Δ0, 0)⊤, and 𝒙int ± (0, Δ0)⊤. Table 2-5 lists
six different classical (semi-)norms; this numerical example reports the corresponding
results when using them to construct the least weighted 𝐻2 norm quadratic model.

Table 2-5 Different (semi-)norms with corresponding coefficients in the coefficient set

Weight coefficients Corresponding (semi-)norm ID

𝐶1 = 1
3 𝐶2 = 1

3 𝐶3 = 1
3 𝐻2 norm (a)

𝐶1 = 1
2 𝐶2 = 1

2 𝐶3 = 0 𝐻1 norm (b)
𝐶1 = 0 𝐶2 = 1

2 𝐶3 = 1
2 𝐻1 seminorm + 𝐻2 seminorm (c)

𝐶1 = 1 𝐶2 = 0 𝐶3 = 0 𝐻0 norm (𝐿2 norm) (d)
𝐶1 = 0 𝐶2 = 1 𝐶3 = 0 𝐻1 seminorm (e)
𝐶1 = 0 𝐶2 = 0 𝐶3 = 1 𝐻2 seminorm (f)

Table 2-6 presents the results of this numerical experiment, including the number
of function evaluations for each method, the obtained minimizer, and the best function
value. In addition, Figure 2-7 shows the iteration plot for minimizing the Rosenbrock

Table 2-6 Results of the numerical experiment of Example 2.5

ID Function value Solution

(a) 0.0031 (1.0495, 1.1040)⊤

(b) 0.0169 (1.0427, 1.0996)⊤

(c) 0.0203 (1.0418, 1.0990)⊤

(d) 0.0078 (1.0455, 1.1008)⊤

(e) 0.0169 (1.0427, 1.0996)⊤

(f) 0.0147 (1.0426, 1.0984)⊤

52



Chapter 2 Improvements to Quadratic Interpolation Models in Derivative-Free Trust-Region Algorithms

5 10 15

Number of function evaluations

10
-2

10
-1

T
h
e
 b

e
s
t 

fu
n
c
ti

o
n
 v

a
lu

e

Figure 2-7 Minimizing Rosenbrock function

function (the current best function value versus iteration), where we display the first
16 evaluations. It can be seen that, in this example and under a (initially) small trust-
region radius, the algorithm using the least 𝐻2 norm updating quadratic model has an
advantage.

Table 2-7 Test problems for Figure 2-8

ARGLINA ARGLINA4 ARGLINB ARGLINC ARGTRIG
ARWHEAD BDQRTIC BDQRTICP BDVALUE BROWNAL
BROYDN3D BROYDN7D BRYBND CHAINWOO CHNROSNB
CHPOWELLB CHROSEN CRAGGLVY CUBE DQRTIC
EDENSCH ENGVAL1 ERRINROS EXPSUM EXTROSNB
EXTTET FIROSE FLETCBV2 FLETCBV3 FLETCHCR
FREUROTH GENBROWN GENROSE INDEF INTEGREQ
LIARWHD LILIFUN3 LILIFUN4 MOREBV MOREBVL
NONDIA PENALTY1 PENALTY2 PENALTY3 PENALTY3P
ROSENBROCK SBRYBND SBRYBNDL SEROSE SINQUAD
SROSENBR STMOD TOINTTRIG TQUARTIC TRIGSABS
TRIGSSQS TRIROSE1 TRIROSE2 VARDIM WOODS

Therefore, this illustrates the advantage of using the weight coefficients correspond-
ing to the central KKT matrix in the least weighted 𝐻2 norm updating quadratic model
function.

To demonstrate more numerical performance of the algorithm based on the least
weighted 𝐻2 norm updating quadratic model function, we attempt to solve some clas-
sical test problems and use the Performance Profile to present the numerical results.
Table 2-7 shows the test problems corresponding to the Performance Profile, whose di-
mensions range from 2 to 200. They are selected from classical and commonly used
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unconstrained optimization test function sets [92, 174, 177, 180, 181, 183–186].

Figure 2-8 Solving test problems with different algorithms: Performance Profile

In each iteration, 2𝑛 + 1 interpolation points are used. In addition, each algorithm
starts from the given initial point 𝒙int of the problem set, and the accuracy 𝜏 in the
Performance Profile is set to 1%. The initial interpolation set is {𝒙int, 𝒙int ± 𝒆𝑗 , 𝑖 =
1, ⋯ , 𝑛}. The tolerances for the trust-region radius and the model gradient norm are
both set to 10−8. Their common initial trust-region radius is 1. The parameters in
Algorithm 3 are 𝛾 = 2, ̂𝜂1 = 1

4 , ̂𝜂2 = 3
4 , and 𝜇 = 0.1.

We can observe from Figure 2-8: among the listed derivative-free algorithms based
on the least weighted 𝐻2 norm updating quadratic model, when 𝛼 is greater than approx-
imately 1.5, the trust-region algorithm based on the least 𝐻2 norm updating quadratic
model function with weight coefficients 𝐶1 = 𝐶2 = 𝐶3 = 1

3 can solve more than 70%
of the problems, performing better than the other algorithms. This demonstrates the
advantage of this set of weight coefficients.

2.2.5 Conclusion

This sectionmainly discussed how to evaluate a set of weight coefficients of theweighted
𝐻2 norm and how to find their optimal choice. We considered the weight coefficients
appearing in the objective function of the interpolation model subproblem, where mini-
mizing these objective functions yields the corresponding quadratic model function. We
defined the KKT matrix distance, the KKT matrix error, and the barycenter of the coef-
ficient region. Then we computed the barycenter of the coefficient region 𝒞 of the least
weighted 𝐻2 norm updating quadratic model as the trust-region radius tends to 0. We
provided related numerical experiments on minimizing the Rosenbrock function. We
also used the Performance Profile to present the numerical performance comparison of
algorithms corresponding to different models. For future work, we may consider com-
paring the weight coefficients of the least weighted 𝐻2 norm updating quadratic model
from other perspectives and further exploring more properties of underdetermined in-
terpolation models in derivative-free optimization.
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Table 2-8 The subproblem for the proposed under-determined quadratic model 𝑄𝑘

Subproblem
min
𝑄∈𝒬

‖∇2𝑄 − ∇2𝑄𝑘−1‖2
𝐹 + 𝛼𝑘‖∇𝑄(𝒙𝑘)‖2

2 + 𝛽𝑘‖(𝑰 − 𝑷𝑘)∇𝑄(𝒙𝑘)‖2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

Parameters

𝜌𝑘−1 = 𝑓(𝒙𝑘)−𝑓(𝒙𝑘−1)
𝑄𝑘−1(𝒙𝑘)−𝑄𝑘−1(𝒙𝑘−1) , (𝒙𝑘 ≠ 𝒙𝑘−1)

1: indicator function (1([true]) = 1,1([false]) = 0)
𝜂0 ≥ 0: pre-given algorithm hyperparameter
𝛼𝑘 = 1{0 < ‖𝒙𝑘 − 𝒙𝑘−1‖2 < Δ𝑘−1}1{𝜌𝑘−1 > 𝜂0}
𝛽𝑘 = 1{‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1}1{𝜌𝑘−1 > 𝜂0}
𝑰 : identity matrix; Δ𝑘−1: trust-region radius at iteration 𝑘 − 1
𝑷𝑘 = (𝒙𝑘−𝒙𝑘−1)(𝒙𝑘−𝒙𝑘−1)⊤

‖𝒙𝑘−𝒙𝑘−1‖2
2

projects a vector in ℜ𝑛 onto span{𝒙𝑘 − 𝒙𝑘−1}

Model 𝑄(𝒙) ∶= 1
2(𝒙 − 𝒙𝑘)⊤∇2𝑄(𝒙 − 𝒙𝑘) + ∇𝑄(𝒙𝑘)⊤(𝒙 − 𝒙𝑘) + 𝑐

𝑐: constant term of the quadratic 𝑄; 𝒬: set of quadratic functions

Interpolation
𝒳𝑘 = {𝒚1, ⋯ , 𝒚𝑚}⊂ ℜ𝑛: interpolation point set at step 𝑘
𝒳𝑘 = 𝒳𝑘−1 ∪ {𝒙𝑘}\{𝒙(𝑘)

𝑡 } (in a successful step) ; 𝒙(𝑘)
𝑡 : discarded point

𝒙𝑘
𝒙𝑘 ∈ {arg min

𝒙
𝑄𝑘−1(𝒙), s. t. 𝒙 ∈ ℬΔ𝑘−1(𝒙𝑘−1)} (in a successful step)

ℬΔ𝑘−1(𝒙𝑘−1) = {𝒙, ‖𝒙 − 𝒙𝑘−1‖2 ≤ Δ𝑘−1}

2.3 Derivative-Free Methods Using New Under-Determined Quadratic Interpolation
Models

2.3.1 Background and Motivation

Conn and Toint [171] proposed a least norm type under-determined quadratic interpola-
tion model for model-based derivative-free trust-region algorithms, which is the soution
of the subproblem about a quadratic function 𝑄

min
𝑄∈𝒬

‖∇2𝑄‖2
𝐹 + ‖∇𝑄(𝒙𝑘)‖

2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘.
(2-33)

Conn and Toint showed the numerical advantages of this model. Following their work,
more under-determined quadratic interpolation models were proposed [93, 97, 153,
154]. At present, a common way to iteratively obtain an under-determined quadratic
model 𝑄𝑘 is to solve a corresponding least norm (change/update) constrained optimiza-
tion problem. For example, the model proposed by Powell [93] is obtained by solving
the subproblem

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

(2-34)
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(as mentioned before). If ∇2𝑄𝑘−1 in (2-34) is replaced by the zero matrix, then it be-
comes the least norm quadratic model proposed by Conn, Scheinberg, and Toint [156],
which also has good numerical performance and is therefore widely used in practice.

As mentioned above, constructing the model function and obtaining the next iterate
by solving the trust-region subproblem of the model are two main steps of model-based
derivative-free trust-region methods. Most existing work on constructing models for
derivative-free methods does not take into account the previous trust-region subprob-
lem and its numerical solution (in most cases, the current iterate). This section considers
constructing a quadratic model according to the position of the iterate given by the pre-
vious model within the previous trust region and the success of the iteration. The main
motivation is to let the previous model and the numerical solution of its corresponding
trust-region subproblem provide as much useful information as possible for the current
model. Given that the ultimate goal of constructing models for derivative-free opti-
mization is to make the next iterate given by solving each corresponding trust-region
subproblem close to the true minimizer in the same trust region, we can use the position
of the current iterate and the success information of the iteration to guide the construc-
tion of the model function.

This section attempts to provide a new perspective for understanding and analyzing
the Conn-Toint model, and to propose a new model (a rough illustration is given in
Table 2-8, and see Figure 2-9, where 𝒙 ∈ ℜ𝑛, 𝑷𝑘 ∈ ℜ𝑛×𝑛, and vectors are written as
column vectors), with the formula of the model given based on the KKT conditions of
the corresponding subproblem.

Remark 2.6. If for a pre-given algorithm hyperparameter 𝜂0 ≥ 0 we have 𝜌𝑘−1 > 𝜂0,
then the algorithm obtains a successful step; otherwise (including the case 𝒙𝑘 = 𝒙𝑘−1),
we call it an unsuccessful step.

This work is the first to consider constructing under-determined interpolation mod-
els by exploiting the trust-region iteration properties. In short, our innovation is to con-
struct the quadratic model of the current step by considering the position of the iterate
generated in the previous step by the quadratic model and the success of the iteration.

The remaining part of this section is organized as follows. Section 2.3.2 discusses
how to use the trust-region iteration properties to theoretically analyze and improve the
Conn-Toint model. Section 2.3.3 analyzes the strict convexity of the subproblem of our
model and gives a computation formula for obtaining our new model based on KKT
conditions. Section 2.3.4 presents numerical results. Finally, we give a conclusion.

2.3.2 A Model Considering the Previous Trust-Region Iteration Properties

For derivative-free trust-region methods based on quadratic interpolation models, it is
very important to ensure that the minimizer of the quadratic model within the trust
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𝒙𝑘
𝒙𝑘−1

ℬΔ𝑘−1(𝒙𝑘−1)

Successful step, 𝛼𝑘 = 0, 𝛽𝑘 = 0
Subproblem for obtaining 𝑄𝑘:

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

𝒙𝑘
𝒙𝑘−1

ℬΔ𝑘−1(𝒙𝑘−1)

Successful step, 𝛼𝑘 = 1, 𝛽𝑘 = 0, 0 < ‖𝒙𝑘 − 𝒙𝑘−1‖2 < Δ𝑘−1
Subproblem for obtaining 𝑄𝑘:

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹 + ‖∇𝑄(𝒙𝑘)‖

2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘
−∇𝑄(𝒙𝑘)

𝒙𝑘
𝒙𝑘−1 Δ𝑘−1

ℬΔ𝑘−1(𝒙𝑘−1)

Successful step, 𝛼𝑘 = 0, 𝛽𝑘 = 1, ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1

−∇𝑄(𝒙𝑘)

Subproblem for obtaining 𝑄𝑘:
min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹 + ‖(𝑰 − 𝑷𝑘) ∇𝑄(𝒙𝑘)‖

2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

−(𝑰 − 𝑷𝑘)∇𝑄(𝒙𝑘)

Figure 2-9 Illustration of the subproblem
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region is sufficiently close to the minimizer of the objective function 𝑓 in the same trust
region. This is because the role of the quadratic interpolation model function in model-
based derivative-free trust-region methods is to provide a new iterate with a smaller
function value, obtained by minimizing the current model function within the current
trust region. In fact, model-based trust-region methods attempt to iteratively use the
minimizer of a good model function within the trust region to replace the minimizer of
the black-box objective function 𝑓 in the same trust region.

Therefore, we analyze the Conn-Toint model through trust-region iterations and the
optimality of the newly obtained iterate. This helps us better understand the Conn-Toint
model and derive an improved model. Let us further observe the following lemma,
which considers the drawbacks and risks of traditional function value interpolation (1-
3) in the one-dimensional case, given by Robinson [187] in 1979.

Lemma 2.23 (Risk of minimizer in quadratic interpolation). Let 𝑥∗ ∈ ℜ and 𝜀 > 0.
Suppose 𝑓 is a continuous unimodal function from the interval [𝑥∗ − ̂𝜀, 𝑥∗ + ̂𝜀] to ℜ,
with minimizer 𝑥∗. Then unless 𝑓 coincides with some quadratic function on [𝑥∗ −

̂𝜀, 𝑥∗ + ̂𝜀], there exist points 𝑥0 < 𝑥1 < 𝑥2 within [𝑥∗ − ̂𝜀, 𝑥∗ + ̂𝜀], with 𝑥1 ≠ 𝑥∗, such
that the unique minimizer of the quadratic function 𝑄 interpolating 𝑓 at these three
points is 𝑥1.

The above lemma shows that a quadratic interpolation model function (for more
details see Definition 6.2 in the book by Conn, Scheinberg, and Vicente [20]) may fail
to provide the correct minimizer. Moreover, by choosing interpolation points, one can
evenmake the minimizer of the quadratic interpolation model fall at a completely wrong
location. This reveals that function value constraints (1-3) may not directly characterize
the optimality or minimizer of the approximated function.

Zhang [154] established a connection between the Conn–Toint model and the
quadratic model with the least 𝐻1 seminorm. Since then, there has been little di-
rect analysis of the original approximation model first proposed by Conn and Toint.
To the best of our knowledge, analyses of under-determined interpolation models for
model-based derivative-free optimization rarely involve the properties of trust-region
iterations. Here we attempt to analyze the Conn–Toint model through the lens of trust-
region iteration properties. We will propose a new model by selectively regarding the
under-determined quadratic model as a quadratic model or a linear model on successful
iterations of the algorithm, as described earlier; this can be viewed as a combination of
model and iteration properties.
Remark 2.7 (Optimality of the model in derivative-free quasi-Newton methods). Green-
stadt [89] proposed a derivative-free quasi-Newton method that considers the optimality
of the model at the iterate. However, in derivative-free trust-region optimization algo-
rithms, the model’s optimality at the iterate has not been directly used to construct the
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model. This motivates us, when attempting to obtain an under-determined quadratic in-
terpolation model, to consider the model’s optimality and descent property at the known
iterate.

In fact, at the 𝑘-th step when solving with the algorithm, if the step is successful,
then the iterate and interpolation point 𝒙𝑘 is special, because it is a point obtained by
numerically solving a trust-region subproblem rather than a generic sample point used
only for interpolation. We know that each newly added iterate/interpolation point 𝒙𝑘 is
the minimizer of the (𝑘−1)-st model 𝑄𝑘−1 within the (𝑘−1)-st trust region. Traditional
trust-region methods design and use a subroutine to solve the trust-region subproblem

min
𝒅

𝑄𝑘−1(𝒙𝑘−1 + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ𝑘−1

(2-35)

to obtain the new iterate 𝒙𝑘 = 𝒙𝑘−1 + 𝒅𝑘−1, where 𝒅𝑘−1 is a solution of (2-35). In
practice, we have reason to trust and use the information provided by the model from
the previous step. Powell’s least norm updating follows a similar idea. In other words,
the premise of improving the previous model is to believe that the previous model (es-
pecially when it provides a successful step) is good.

We know that the term ‖∇2𝑄‖2
𝐹 in the objective function appears in (2-33) in order

to fill the remaining degrees of freedom of the under-determined quadratic model that
are not fixed by the function value constraints (1-3). However, in the subproblem cor-
responding to the Conn–Toint model, the term ‖∇𝑄(𝒙𝑘)‖

2
2 may seem unnecessary for

constructing the model. In fact, from the perspective of trust-region iteration and model
optimality, it is beneficial to the model; we give the reason below.

Regarding the solution of the trust-region subproblem, we recall the following clas-
sical result6.

Proposition 2.24 (Solution of the trust-region subproblem). For a quadratic function
𝑄, a vector 𝒛 ∈ ℜ𝑛 satisfies

𝒛 ∈ {arg min
𝒙

𝑄(𝒙), s. t. 𝒙 ∈ ℬΔ𝑘−1(𝒙𝑘−1)} , (2-36)

if and only if ‖𝒛 − 𝒙𝑘−1‖2 ≤ Δ𝑘−1 and there exists 𝜔 ≥ 0 such that 𝒛 satisfies

(∇2𝑄 + 𝜔𝑰) (𝒛 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘−1) = 0𝑛, (2-37)

and
𝜔 (Δ𝑘−1 − ‖𝒛 − 𝒙𝑘−1‖2) = 0,

∇2𝑄 + 𝜔𝑰 ⪰ 0𝑛𝑛, (2-38)

where 𝑨 ⪰ 0 means that 𝑨 is positive semidefinite.
6More details can be found in classical numerical optimization textbooks, e.g., Theorem 4.1 in the book by

Nocedal and Wright [3].
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Moreover,
∇𝑄(𝒙𝑘) = ∇2𝑄 (𝒙𝑘 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘−1).

Therefore, the subproblem (2-33) of the Conn–Toint model can be rewritten as the
subproblem

min
𝑄∈𝒬 ‖∇2𝑄‖

2
𝐹 + ‖∇2𝑄 (𝒙𝑘 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘−1)‖

2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘,
(2-39)

where the second term in the objective forces 𝒙𝑘 to be close to a stable point of
the quadratic model function 𝑄𝑘 when 𝒙𝑘 lies in the interior of ℬΔ𝑘−1(𝒙𝑘−1) (i.e.,
‖𝒙𝑘 − 𝒙𝑘−1‖2 < Δ𝑘−1), because in this case 𝜔 = 0. In this case we anticipate ∇2𝑄𝑘
to be positive semidefinite; in fact, solving the subproblem (2-39) tends to achieve this
goal, since 𝒙𝑘 has a small or minimal function value within 𝒳𝑘 and ‖𝒙𝑘 − 𝒙𝑘−1‖2 <
Δ𝑘−1.

We write subproblem (2-33) as (2-39) to make it consistent with (2-41). Analyzing
a successful 𝒙𝑘 with ‖𝒙𝑘 −𝒙𝑘−1‖2 < Δ𝑘−1 helps us establish new insight into the Conn–
Toint model. Below we consider the case ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1, which helps us derive
our model.

Based on the above discussion, we seek to propose a new model. According to the
above, if 0 < ‖𝒙𝑘 − 𝒙𝑘−1‖2 < Δ𝑘−1 and 𝒙𝑘 is a successful step, i.e.,

𝜌𝑘−1 = 𝑓(𝒙𝑘) − 𝑓(𝒙𝑘−1)
𝑄𝑘−1(𝒙𝑘) − 𝑄𝑘−1(𝒙𝑘−1) > 𝜂0 ≥ 0,

then it is reasonable to regard the second- and first-order information of the under-
determined quadratic model 𝑄𝑘−1 as guidance for obtaining 𝒙𝑘. As discussed earlier, if
∇2𝑄𝑘 is positive definite, then the regularization term ‖∇𝑄(𝒙𝑘)‖

2
2 will make the mini-

mizer of 𝑄𝑘 within ℬΔ𝑘−1(𝒙𝑘−1) close to 𝒙𝑘. In this case, 𝑄𝑘 should inherit the second-
order property of the quadratic model 𝑄𝑘−1.

However, in the case where 𝒙𝑘 is a successful step and ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1, ac-
cording to the KKT conditions, if the algorithm still uses the Conn–Toint model, then
the term ‖∇𝑄(𝒙𝑘)‖2

2, as we discussed before, implies treating 𝒙𝑘 as a good approximate
stable point of the objective function 𝑓 ; this actually misuses, in some sense, the infor-
mation provided by 𝑄𝑘−1 and 𝒙𝑘, because in this case 𝒙𝑘 may not be close to a stable
point of 𝑓 .

In this case, according to Proposition 2.24, if the algorithm still wants the 𝑘-th model
to follow the quadratic nature of the (𝑘−1)-st model and tries to make the minimizer of
𝑄𝑘 within ℬΔ𝑘−1(𝒙𝑘−1) close to 𝒙𝑘, then the regularization term can be the squared ℓ2
norm of the left-hand side of (2-37), namely

‖(∇2𝑄 + 𝜔𝑰) (𝒙𝑘 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘−1)‖
2
2 = ‖𝜔(𝒙𝑘 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘)‖

2
2 , (2-40)
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where 𝜔 ≥ 0 and we wish 𝜔 to satisfy ∇2𝑄𝑘 + 𝜔𝑰 ⪰ 0, with 𝑄𝑘 obtained by solving
the subproblem

min
𝑄∈𝒬 ‖∇2𝑄‖

2
𝐹 + ‖𝜔(𝒙𝑘 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘)‖

2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

(2-41)

to obtain. However, the uncertainty of the parameter 𝜔 makes the above idea difficult to
implement directly, for the following reasons. Note that our goal is to obtain the model
𝑄𝑘 given 𝜔, which differs from the classical setting of obtaining the minimizer of a
known quadratic function within a trust region.

On the one hand, if we set 𝜔 = 0 in the objective of (2-41) to provide a quadratic
interpolation model, then it is exactly the Conn–Toint subproblem (2-33), and thus
yields the correspondingmodel function; but we have discussed that this is inappropriate
when 𝒙𝑘 is a successful step with ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1.

On the other hand, if we consider a not-necessarily-zero 𝜔, it is hard to choose a
suitable 𝜔 to ensure that ∇2𝑄𝑘 + 𝜔𝑰 is positive semidefinite, and different 𝜔 will yield
different model functions 𝑄𝑘 after solving (2-41).

Moreover, for our under-determined quadratic interpolation model, the number of
interpolation points used to construct each model is fewer than 1

2(𝑛 + 1)(𝑛 + 2). There-
fore, a unique quadratic model cannot be determined by interpolation alone.

According to the above analysis, the uncertainty of 𝜔 leads to non-uniqueness of the
quadraticmodel function, whichmakes adding the second term in the objective of (2-41)
to capture the quadratic information provided by 𝑄𝑘−1 not necessarily accurate, even in
the case where the iterate 𝒙𝑘 is a successful iteration. The above situation motivates
us to propose a new model: depending on the relationship between ‖𝒙𝑘 − 𝒙𝑘−1‖2 and
Δ𝑘−1, we selectively regard the previous model as a linear model or a quadratic model7.

For the case ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1 with a successful step, we consider it reasonable
to assume that “the direction 𝒙𝑘 − 𝒙𝑘−1 still provides an approximate gradient descent
direction at the latest iterate𝒙𝑘”. Specifically, the algorithm has obtained, in a successful
step, a new iterate that sufficiently reduces the function value. In this case, the obtained
(𝑘−1)-st quadratic model is considered to provide a relatively accurate gradient descent
direction. Moreover, the algorithm (in such a successful step) should have obtained only
a good first-order approximation.

Therefore, we consider it reasonable and practical to make the new model 𝑄𝑘 as
consistent as possible with the descent property or information of 𝑄𝑘−1. In other words,
besides minimizing ‖∇𝑄𝑘(𝒙𝑘)‖2 while satisfying the function value constraints (1-3),
the direction of 𝒙𝑘 − 𝒙𝑘−1 should be close to the direction of −∇𝑄𝑘(𝒙𝑘). In addi-
tion, if 𝑄𝑘(𝒙) also attains its minimum at 𝒙𝑘 within the trust region ℬΔ𝑘−1(𝒙𝑘−1), then

7We selectively regard the information and optimality at 𝒙𝑘 provided by 𝑄𝑘−1 as being given by a reliable linear
or quadratic model according to whether ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1 holds.
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(𝑰 − 𝑷𝑘) ∇𝑄(𝒙𝑘) = 0𝑛, where 𝑷𝑘 = (𝒙𝑘 − 𝒙𝑘−1)(𝒙𝑘 − 𝒙𝑘−1)⊤/‖𝒙𝑘 − 𝒙𝑘−1‖2
2 projects

vectors in ℜ𝑛 onto span {𝒙𝑘 − 𝒙𝑘−1}, 0𝑛 ∈ ℜ𝑛 is the zero vector. Based on this, we
[188] propose obtaining the model 𝑄𝑘 by solving the subproblem

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹 + 𝛼𝑘 ‖∇𝑄(𝒙𝑘)‖

2
2 + 𝛽𝑘 ‖(𝑰 − 𝑷𝑘) ∇𝑄(𝒙𝑘)‖

2
2

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

(2-42)

where the coefficients 𝛼𝑘 and 𝛽𝑘 are defined in Table 2-8, i.e.,

𝛼𝑘 =
{

1, if 0 < ‖𝒙𝑘 − 𝒙𝑘−1‖2 < Δ𝑘−1 and 𝜌𝑘−1 > 𝜂0,
0, otherwise,

𝛽𝑘 =
{

1, if ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1 and 𝜌𝑘−1 > 𝜂0,
0, otherwise,

|𝒳𝑘| < 1
2(𝑛 + 1)(𝑛 + 2) and

𝜌𝑘−1 = 𝑓(𝒙𝑘) − 𝑓(𝒙𝑘−1)
𝑄𝑘−1(𝒙𝑘) − 𝑄𝑘−1(𝒙𝑘−1) .

Please note that we keep the term ‖∇2𝑄 − ∇2𝑄𝑘−1‖
2
𝐹 in the objective of (2-42)

in order to inherit some merits of Powell’s least norm updating, since the historical
information of the interpolation model 𝑄𝑘−1 is still useful. When 𝒙𝑘 corresponds to an
unsuccessful step, the subproblem reduces to Powell’s Frobenius norm updating under-
determined model, because in this case 𝛼𝑘 = 0 and 𝛽𝑘 = 0.

Remark 2.8. When ‖𝒙𝑘 − 𝒙𝑘−1‖2 = Δ𝑘−1 and 𝜔 = ‖𝑷𝑘∇𝑄(𝒙𝑘)‖2/‖𝒙𝑘 − 𝒙𝑘−1‖2, mini-
mizing the objective in (2-42) reduces the ℓ2 norm value of the left-hand side of (2-37),
because if 𝜔 = ‖𝑷𝑘∇𝑄(𝒙𝑘)‖2/‖𝒙𝑘 − 𝒙𝑘−1‖2, then

‖(∇2𝑄 + 𝜔𝑰) (𝒙𝑘 − 𝒙𝑘−1) + ∇𝑄(𝒙𝑘−1)‖
2
2 = ‖(𝑰 − 𝑷𝑘)∇𝑄(𝒙𝑘)‖

2
2 .

The above analysis shows that, in this case, minimizing (2-41) is equivalent to minimiz-
ing (2-42) to obtain our model 𝑄𝑘.

We should note that a quadratic model interpolation obtained solely via function
value interpolation based on (1-3) or a traditional least norm scheme may already re-
flect the curvature and shape of a quadratic function in some sense. However, without
increasing the number of interpolation points, considering the optimality at 𝒙𝑘 at the
𝑘-th step can, in a certain sense, yield a better approximation than not considering opti-
mality. The numerical results in Section 2.3.4 demonstrate the advantage of our model.
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2.3.3 Convexity of the Subproblem and the Computation Formula of the Model

Next, we analyze the strict convexity of the subproblem (2-42) to show that the sub-
problem (2-42) has a unique solution.

Theorem 2.25 (Strict convexity of the subproblem objective). Given 𝛼𝑘 ≥ 0, 𝛽𝑘 ≥
0, 𝒙𝑘 ∈ ℜ𝑛, 𝑰 ∈ ℜ𝑛×𝑛, 𝑷𝑘 ∈ ℜ𝑛×𝑛, assume the set 𝒳𝑘 is not contained in a subspace of
dimension less than 𝑛. For all quadratic functions that satisfy the interpolation condi-
tions in (2-42), the objective

‖∇2𝑄 − ∇2𝑄𝑘−1‖
2
𝐹 + 𝛼𝑘 ‖∇𝑄(𝒙𝑘)‖

2
2 + 𝛽𝑘 ‖(𝑰 − 𝑷𝑘) ∇𝑄(𝒙𝑘)‖

2
2

as a function of the quadratic 𝑄 is strictly convex.

Proof. Let ℱ(𝑄) denote the objective. We need to prove that for 0 < 𝜑 < 1 and
quadratic functions 𝑄𝑎 ≠ 𝑄𝑏 satisfying the constraints in (2-42),

ℱ(𝜑𝑄𝑎 + (1 − 𝜑)𝑄𝑏) < 𝜑ℱ(𝑄𝑎) + (1 − 𝜑) ℱ(𝑄𝑏). (2-43)

The theorem’s assumption implies ∇2𝑄𝑎 ≠ ∇2𝑄𝑏. Hence,

ℱ(𝜑𝑄𝑎 + (1 − 𝜑)𝑄𝑏) − (𝜑ℱ(𝑄𝑎) + (1 − 𝜑)ℱ(𝑄𝑏))
= (𝜑2 − 𝜑) [ ‖∇2𝑄𝑎 − ∇2𝑄𝑏‖

2
𝐹 + 𝛼𝑘 ‖(∇𝑄𝑎(𝒙𝑘) − ∇𝑄𝑏(𝒙𝑘))‖

2
2

+ 𝛽𝑘 ‖(𝑰 − 𝑷𝑘) (∇𝑄𝑎(𝒙𝑘) − ∇𝑄𝑏(𝒙𝑘))‖
2
2 ] < 0.

Thus (2-43) holds, and strict convexity follows.

We then obtain the strict convexity of subproblem (2-42) and the uniqueness of
its solution, which ensures that our under-determined interpolation model is uniquely
determined at every step of the algorithm.

In order to derive a computable formula for obtaining the model, we give the fol-
lowing theorem based on the KKT conditions.

Theorem 2.26 (Computation formula for the quadratic model). The quadratic function

𝑄(𝒙) = 1
2 (𝒙 − 𝒙𝑘)

⊤ 𝑯 (𝒙 − 𝒙𝑘) + 𝒈⊤ (𝒙 − 𝒙𝑘) + 𝑐,

where

𝑯 =∇2𝑄𝑘−1 + 1
4

𝑚

∑
𝑗=1

𝜆𝑗 (𝒚𝑗 − 𝒙𝑘) (𝒚𝑗 − 𝒙𝑘)
⊤ ,

𝜆𝜆𝜆 = (𝜆1, ⋯ , 𝜆𝑛)⊤ ∈ ℜ𝑛, and (𝜆𝜆𝜆, 𝑐, 𝒈)⊤ ∈ ℜ𝑚+1+𝑛 is the solution of the KKT system

⎛
⎜
⎜
⎜
⎝

𝑨 𝑬 𝑿
𝑬⊤ 0 0⊤

𝑛
𝑿⊤ 0𝑛 𝑩

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆
𝑐
𝒈

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝒓
0
0𝑛

⎞
⎟
⎟
⎟
⎠

(2-44)
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is the solution of subproblem (2-42), where

𝒓 =
⎛
⎜
⎜
⎜
⎝

𝑓(𝒚1) − 1
2 (𝒚1 − 𝒙𝑘)

⊤ ∇2𝑄𝑘−1 (𝒚1 − 𝒙𝑘)
⋮

𝑓(𝒚𝑚) − 1
2 (𝒚𝑚 − 𝒙𝑘)

⊤ ∇2𝑄𝑘−1 (𝒚𝑚 − 𝒙𝑘)

⎞
⎟
⎟
⎟
⎠

,

𝑿 = (𝒚1 − 𝒙𝑘, ⋯ , 𝒚𝑚 − 𝒙𝑘)
⊤ ,

𝑩 = −2𝛼𝑘𝑰 − 2𝛽𝑘(𝑰 − 𝑷𝑘)⊤(𝑰 − 𝑷𝑘),

the entries of the matrix 𝑨 are

𝑨𝑖𝑗 = 1
8 [(𝒚𝑖 − 𝒙𝑘)

⊤
(𝒚𝑗 − 𝒙𝑘)]

2
, 1 ≤ 𝑖, 𝑗 ≤ 𝑚,

and 𝑬 is the vector whose entries are all ones.

Proof. The Lagrangian function corresponding to subproblem (2-42) is

ℒ(𝑐, 𝒈, 𝑯) = ‖𝑯 − ∇2𝑄𝑘−1‖
2
𝐹 + 𝛼𝑘 ‖𝒈‖2

2 + 𝛽𝑘 ‖(𝑰 − 𝑷𝑘) 𝒈‖
2
2

−
𝑚

∑
𝑗=1

𝜆𝑗 [
1
2 (𝒚𝑗 − 𝒙𝑘)

⊤ 𝑮 (𝒚𝑗 − 𝒙𝑘) + 𝒈⊤ (𝒚𝑗 − 𝒙𝑘) + 𝑐] .

From the KKT conditions, we have

𝜕ℒ
𝜕𝑐 =

𝑚

∑
𝑗=1

𝜆𝑗 = 0,

𝜕ℒ
𝜕𝒈 = 2𝛼𝑘𝒈 + 2𝛽𝑘 (𝑰 − 𝑷𝑘)

⊤
(𝑰 − 𝑷𝑘) 𝒈 −

𝑚

∑
𝑗=1

𝜆𝑗 (𝒚𝑗 − 𝒙𝑘) = 0𝑛,

𝜕ℒ
𝜕𝑯 = 2𝑯 − 2∇2𝑄𝑘−1 − 1

2

𝑚

∑
𝑗=1

𝜆𝑗 (𝒚𝑗 − 𝒙𝑘) (𝒚𝑗 − 𝒙𝑘)
⊤ = 0𝑛𝑛,

and
𝑓(𝒚𝑖) = 𝑐 + 𝒈⊤ (𝒚𝑖 − 𝒙𝑘) + 1

2 (𝒚𝑖 − 𝒙𝑘)
⊤ 𝑯 (𝒚𝑖 − 𝒙𝑘) , 𝑖 = 1, ⋯ , 𝑚.

From the above relations we can derive the KKT system (2-44), proving the theorem.

For the model subproblem discussed above, we only need tomodify the KKT system
to obtain the formula for the corresponding quadratic model function, which is easy to
implement.

2.3.4 Numerical results

This section presents numerical results, including the outcome of solving a numerical
example and the Performance Profile and Data Profile for solving a set of test problems.

The following example illustrates the advantage of the model and method proposed
in this section.
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Example 2.6 (Initial iterative performance). We present an unconstrained optimization
problem as an example. The objective is the 2D Rosenbrock function

𝑓(𝒙) = (1 − 𝑥1)
2 + 100 (𝑥2 − 𝑥2

1)
2 ,

with minimum value 0, and the initial trust-region radius is Δ0 = 1.
Step 1. The initial interpolation points 𝒚1, 𝒚2, 𝒚3 are

𝒚1 =
(

0
7)

, 𝒚2 =
(

1
7)

, 𝒚3 =
(

0
8)

.

Step 2. Obtain 𝑄0 by solving

min
𝑄∈𝒬 ‖∇2𝑄‖

2
𝐹

s. t. 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝑖 = 1, 2, 3.

Step 3. Obtain 𝒅∗ by solving
min

𝒅
𝑄0(𝒚2 + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ0

and set 𝒚4 = 𝒚2 + 𝒅∗. If this step is successful, replace the interpolation point with the
largest function value by 𝒚4. Note that we choose 𝒚2 as the trust-region center because
it has the smallest function value among 𝒚1, 𝒚2, 𝒚3.
Step 4. Construct different 𝑄1 using the different methods listed in Table 2-9 for com-
parison ; if the new point’s function value is smaller than some point in the interpolation
set, add the new point to the interpolation set and discard the point farthest (in Euclidean
distance) from the point with the smallest function value.
Step 5. Obtain 𝒅∗ again by solving

min
𝒅

𝑄1(𝒙small + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ0,

where 𝒙small is the point with the smallest function value among the current sample
points, set 𝒚5 = 𝒙small + 𝒅∗, and denote by 𝒙min the point satisfying

𝑓(𝒙min) = min {𝑓(𝒚1), 𝑓 (𝒚2), 𝑓 (𝒚3), 𝑓 (𝒚4), 𝑓 (𝒚5)} .

Note that all algorithms use the same model 𝑄0 in the first step; they share the
same 𝒚4 = (1.6552, 6.2446)⊤ with 𝑓(𝒚4) = 1.23 × 103, obtained by minimizing the
least-Frobenius norm quadratic model within the trust region. Moreover, they construct
different model functions in the second step according to Table 2-9.
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Table 2-9 Results of Example 2.6: using different models

Model Objective of the subproblem 𝑓(𝒙min)

Our model (considering optimality) Objective of (2-42) 2.09
Least Frobenius norm quadratic model ‖∇2𝑄‖2

𝐹 [156, 160, 189] 34.1
Powell’s quadratic model ‖∇2𝑄 − ∇2𝑄𝑘−1‖2

𝐹 [93] 34.1
Least 𝐻2 norm updating quadratic model ‖𝑄 − 𝑄𝑘−1‖2

𝐻2 [97] 5.33
Conn and Toint’s quadratic model ‖∇2𝑄‖2

𝐹 + ‖∇𝑄(𝒙𝑘)‖2
2 [171] 74.9

Shared function value constraints: 𝑄(𝒚𝑖) = 𝑓(𝒚𝑖), ∀ 𝒚𝑖 ∈ 𝒳𝑘

We observe that the function value of the iterate obtained by the algorithm using
the quadratic model proposed in this section is smaller than the corresponding function
values obtained by algorithms that use models not considering trust-region iteration.

Given that the interpolationmodel functions proposed in this section aremainly suit-
able for model-based derivative-free trust-region algorithms, we provide here a frame-
work of a model-based derivative-free trust-region algorithm used for testing in this
section (the framework used in these experiments is not exactly the same as the ear-
lier one), as shown in Algorithm 4. For more on derivative-free trust-region methods,
see the survey by Larson, Menickelly, and Wild [128] and the monograph by Conn,
Scheinberg, and Vicente [20], among others.

Algorithm 4 Model-based derivative-free trust-region algorithm
(Initialization)
Set parameters 𝜀, 𝜀stop > 0, 𝜂0, 𝜂1: 0 ≤ 𝜂0 ≤ 𝜂1 < 1 and 𝛾0, 𝛾1: 0 < 𝛾0 < 1 ≤ 𝛾1, ̄𝛾 .
Choose an initial point 𝒙int and the value 𝑓(𝒙int). Choose an initial trust-region radius
Δ0 > 0 and an upper bound Δup > Δ0. Choose an initial well-poised interpolation
set 𝒳0 [20]. Determine 𝒙0 ∈ 𝒳0 so that it has the smallest objective value among the
current points, i.e., 𝑓(𝒙0) = min

𝒚𝑖∈𝒳0
𝑓(𝒚𝑖).

Step 1. (Construct the model)
Construct an interpolation model 𝑄𝑘(𝒙) using the set 𝒳𝑘.
while ‖∇𝑄𝑘(𝒙𝑘)‖2 < 𝜀 do

if 𝑄𝑘 is accurate on ℬΔ𝑘(𝒙𝑘) then
Set Δ𝑘 = ̄𝛾Δ𝑘.

else
Update 𝒳𝑘 so that 𝑄𝑘 is accurate on ℬΔ𝑘(𝒙𝑘).

end if
end while
Step 2. (Stopping criterion)
if Δ𝑘 < 𝜀stop and ‖∇𝑄𝑘(𝒙𝑘)‖2 < 𝜀stop then
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terminate the algorithm.
end if
Step 3. (Minimize the model within the trust region)
Compute 𝒅𝑘 such that

𝑄𝑘(𝒙𝑘 + 𝒅𝑘) = min
‖𝒅‖2≤Δ𝑘

𝑄𝑘(𝒙 + 𝒅).

if 𝒅𝑘 = 0 then
Go to Step 4 and handle it as the case 𝜌𝑘 ≤ 𝜂0;

else
Evaluate 𝑓(𝒙𝑘 + 𝒅𝑘), and set

𝜌𝑘 = 𝑓(𝒙𝑘) − 𝑓(𝒙𝑘 + 𝒅𝑘)
𝑄𝑘(𝒙𝑘) − 𝑄𝑘(𝒙𝑘 + 𝒅𝑘) .

end if
Step 4. (Update the interpolation set and trust-region radius)
if 𝜌𝑘 < 𝜂1 and 𝑄𝑘 is not accurate on ℬΔ𝑘(𝒙𝑘) then

Generate new interpolation points in ℬΔ𝑘(𝒙𝑘) and add them to 𝒳𝑘 to im-
prove the poisedness of 𝒳𝑘+1, then discard one interpolation point.

end if
if 𝜌𝑘 ≥ 𝜂1 then

Enlarge the trust-region radius: set Δ𝑘+1 = min{Δup, 𝛾1Δ𝑘};
Update the interpolation set: set 𝒳𝑘+1 = 𝒳𝑘 ∪ {𝒙𝑘+1}\{arg max

𝒙
‖𝒙 − 𝒙𝑘+1‖2}.

else if 𝑄𝑘 is accurate on ℬΔ𝑘(𝒙𝑘) then
Shrink the trust-region radius: set Δ𝑘+1 = 𝛾0Δ𝑘;

else
Set Δ𝑘+1 = Δ𝑘.

end if
Step 5. (Update the current iterate)
if 𝜌𝑘 > 𝜂0 then

Choose 𝒙𝑘+1 to be a point satisfying 𝑓(𝒙𝑘+1) ≤ 𝑓(𝒙𝑘 + 𝒅𝑘);
else

Set 𝒙𝑘+1 = 𝒙𝑘.
end if

Set 𝑘 = 𝑘 + 1 and go to Step 1.

Remark 2.9. An accurate model in the algorithm usually refers to a fully linear model
(see more details in Chapter 6 of Conn, Scheinberg, and Vicente [20], especially Defi-
nition 6.1), which here corresponds to the case where the coefficient matrix of the KKT
system (2-44) is invertible. In Step 1 of the current implementation, if the coefficient
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matrix is not invertible, the interpolation points are perturbed to improve the interpola-
tion set and the model (with ̄𝛾 = 1 in testing) in order to obtain an accurate model. In
Step 4, the step that improves the poisedness of 𝒳𝑘 is also called themodel-improvement
step (see Chapter 6 of Conn, Scheinberg, and Vicente [20], especially Algorithm 6.3, for
more details). To simplify and focus on model comparison, in the current implementa-
tion this step is carried out as follows: when 𝜌𝑘 < 𝜂1, remove 𝒙far = arg max

𝒙∈𝒳𝑘
‖𝒙 − 𝒙𝑘‖2

from 𝒳𝑘 and include 𝒙𝑘 + 𝒅𝑘, even if the algorithm does not accept 𝒙𝑘 + 𝒅𝑘 as the
next iterate. In fact, we have already obtained the function value 𝑓(𝒙𝑘 + 𝒅𝑘), and we
should make use of such a known evaluation [160]. In Step 1, it uses the Frobenius
norm quadratic model as the initial quadratic model 𝑄0(𝒙) for the initial iteration (the
least-Frobenius quadratic model based on 𝒳0), and then constructs the corresponding
under-determined model in subsequent iterations (e.g., obtains our proposed model in
this section by solving (2-44)).

If 𝑚 ≥ 𝑛 + 1, then at least the same convergence results can be obtained as for the
corresponding trust-region algorithms whose models are obtained by solving least norm
type subproblems. For such models, it can be shown under appropriate assumptions that
any limit point 𝒙∗ of the derivative-free trust-region algorithm is a stationary point, i.e.,
∇𝑓(𝒙∗) = 0 [20].

We provide the corresponding Performance Profile and Data Profile to observe the
numerical performance of the trust-region algorithm using the new model function that
accounts for its optimality within the trust region when solving the unconstrained test
problems (1-1).

Themethod using the model function proposed in this section (Algorithm 4, indexed
by 𝑎 = 1) is compared with the same framework but using the least-Frobenius norm
quadratic model [156, 160, 189], the least Frobenius norm updating quadratic model
(Powell’s model) [93], the least 𝐻2 norm updating quadratic model [97], the Conn-
Toint model [171], as well as the state-of-the-art derivative-free methods NEWUOA
[94], Fminsearch (MATLAB Optimization Toolbox) [190, 191], Fminunc (MATLAB
Optimization Toolbox) [190], CMA-ES [131], and NMSMAX [192–194], indexed by
𝑎 = 2 to 𝑎 = 10, respectively.

In Algorithm 4, the parameters for shrinking or enlarging the radius and for deciding
whether to accept the obtained point are 𝜂1 = 0.75 and 𝜂0 = 0, respectively. In addition,
the shrinking and enlarging factors of the trust-region radius are 𝛾0 = 0.8 and 𝛾1 = 1.5,
respectively. The tolerances for the trust-region radius and the gradient norm of the
model function are 10−6 and 10−5, respectively. The model accuracy parameter is
𝜀 = 10−8. They use 𝑚 = 2𝑛 + 1 interpolation points at each iteration, and the initial
interpolation points are the origin and the points ±1

2Δ0𝒆𝑖, 𝑖 = 1, ⋯ , 𝑛, where 𝒆𝑖 ∈ ℜ𝑛

denotes the vector with only its 𝑖-th element equal to 1 and the others 0.
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In the numerical tests, NEWUOA uses 2𝑛 + 1 interpolation points (the same initial
points as the method proposed in this section) to construct the corresponding quadratic
model function, with 𝜌end = 10−6 and 𝜌beg the same as the initial radius of the first five
methods using different models. For Fminsearch, the tolerances for the function value
and the iterates are 10−6. Fminunc is set to use a quasi-Newton method with finite-
difference gradients of step length 0.1, and the other related tolerances are of the same
order as for Fminsearch. The parameters of CMA-ES use the default settings [131],
with the relevant stopping criterion for the function value set to 10−5. For NMSMAX,
the iteration terminates when the scale of the simplex is less than or equal to 10−6,
and the initial simplex is a regular simplex with edges of equal length. All compared
algorithms share the same stopping rule on the number of function evaluations, namely,
the total number of evaluations does not exceed 100𝑛, where 𝑛 is the dimension of the
corresponding problem.

We choose the test set 𝒫 listed in Table 2-10 (containing 110 problems, including 51
different types, with dimensions ranging from 2 to 800) to test the effectiveness of our
algorithm for unconstrained derivative-free problems. Note that the average dimension
of our test problems is about 74, with a standard deviation of about 129. They come
from classic and commonly used sets of unconstrained optimization test functions, and
most of the objective functions 𝑓 in the test problems are smooth (BROYDN7D and
TRIGSABS are piecewise smooth).

Table 2-10 110 test problems for Figure 2-10 and Figure 2-11

Problem Dimension 𝑓(𝒙int) 𝑓 (𝒙∗)

ARGLINA [177, 178] 2 1.00 × 101 2.00
ARGLINB [177, 178] 2 2.14 × 102 6.67 × 101

BDVALUE [177, 178] 2 2.43 × 10−2 2.18 × 10−15

BROYDN3D [177, 178] 2 1.30 × 101 6.03 × 10−17

BROYDN7D [177, 184] 2 7.81 6.59 × 101

CHEBQUAD [177, 178] 2 1.98 × 10−1 9.50 × 10−18

CHROSEN [94] 2 2.00 × 101 2.09 × 10−18

CURLY10 [177] 2 −1.01 × 10−5 −2.01 × 102

CURLY20 [177] 2 −1.01 × 10−5 −2.01 × 102

CURLY30 [177] 2 −1.01 × 10−5 −2.01 × 102

DIXMAANE [177] 2 7.00 1.00
DIXMAANF [177] 2 7.00 1.00
DIXMAANG [177] 2 7.00 1.00
DIXMAANH [177] 2 7.00 1.00
DIXMAANI [177] 2 6.00 1.00
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Table 2-10 (Continued)

DIXMAANJ [177] 2 6.00 1.00
DIXMAANK [177] 2 6.00 1.00
DIXMAANL [177] 2 6.00 1.00
DIXMAANM [177] 2 6.00 1.00
DIXMAANN [177] 2 6.00 1.00
DIXMAANO [177] 2 6.00 1.00
DIXMAANP [177] 2 6.00 1.00
ENGVAL1 [177] 2 5.90 × 101 0.00
EXPSUM [182] 2 5.00 0.00
INTEGREQ [177, 178] 2 2.06 × 10−2 2.96 × 10−18

MOREBV [177, 178] 2 2.43 × 10−2 2.18 × 10−15

MOREBVL [180] 2 7.13 4.10 × 10−17

NONCVXU2 [177] 2 3.95 × 101 4.63
NONCVXUN [177] 2 5.32 × 101 4.63
NONDIA [177] 2 1.02 × 104 1.00
POWER [177] 2 5.00 0.00
SBRYBND [177, 178] 2 2.67 × 1014 4.99 × 10−12

SPARSINE [177] 2 1.24 × 101 9.47 × 10−15

TOINTTRIG [184] 2 1.03 × 101 −2.00 × 101

TRIGSSQS [94] 2 3.22 × 103 1.25 × 10−17

TRIROSE1 [186] 2 1.55 × 103 2.27 × 10−15

ARGLINA [177, 178] 3 1.50 × 101 3.00
ARGLINB [177, 178] 3 3.03 × 103 1.15
ARGLINC [177] 3 8.60 × 101 2.67
BROYDN3D [177, 178] 3 1.40 × 101 1.64 × 10−15

EXTTET [185] 3 2.91 2.56
NONCVXU2 [177] 3 1.18 × 102 6.95
NONCVXUN [177] 3 1.57 × 102 6.95
POWER [177] 3 1.40 × 101 0.00
SPARSINE [177] 3 2.48 × 101 1.23 × 10−13

TOINTGSS [177] 3 1.10 × 101 2.00
FLETCHCR [177] 5 4.00 × 102 1.21 × 10−12

TOINTTRIG [184] 5 −1.37 × 101 −2.50 × 102

BROYDN3D [177, 178] 4 1.50 × 101 1.79 × 10−13

NONCVXUN [177] 4 2.90 × 102 9.27
POWER [177] 4 3.00 × 101 0.00
FLETCHCR [177] 6 5.00 × 102 7.91 × 10−13
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Table 2-10 (Continued)

POWELLSG [177, 178] 6 2.15 × 102 1.39 × 10−15

SBRYBND [177, 178] 6 2.68 × 1014 3.60 × 103

BROYDN3D [177, 178] 7 1.80 × 101 6.83 × 10−13

EXTTET [185] 7 8.73 7.68
SBRYBND [177, 178] 9 2.73 × 1014 2.83 × 103

GENROSE [177] 15 9.59 × 101 1.00
SCOSINEL [180] 16 4.56 −1.19 × 101

TRIGSSQS [94] 17 2.47 × 106 5.78 × 101

GENROSE [177] 18 1.06 × 102 1.00
TOINTTRIG [184] 20 −9.09 × 101 −4.75 × 103

SROSENBR [177, 178] 25 2.90 × 102 2.36 × 101

TRIGSSQS [94] 26 1.38 × 107 1.36 × 103

EXTTET [185] 37 5.24 × 101 4.61 × 101

COSINE [177] 39 3.33 × 101 −3.80 × 101

PENALTY3 [177] 40 2.72 × 106 1.00
TRIGSABS [94] 42 5.56 × 103 4.36 × 101

TOINTTRIG [184] 43 −9.89 × 102 −2.26 × 104

SCOSINEL [180] 46 3.72 −2.33 × 101

TRIGSSQS [94] 46 2.45 × 107 1.13 × 101

BROYDN7D [177, 184] 48 1.33 × 102 6.01
TRIGSABS [94] 50 8.48 × 103 3.32 × 101

COSINE [177] 55 4.74 × 101 −5.40 × 101

TRIGSSQS [94] 61 3.23 × 107 3.43 × 102

COSINE [177] 63 5.44 × 101 −6.19 × 101

PENALTY3 [177] 65 1.82 × 107 1.55 × 104

TRIGSABS [94] 66 2.38 × 104 1.11 × 102

TRIGSABS [94] 68 1.93 × 104 9.33 × 101

TOINTGSS [177] 84 7.48 × 102 9.65
TOINTGSS [177] 89 7.93 × 102 9.67
PENALTY3 [177] 90 6.62 × 107 2.90 × 104

PENALTY2 [177, 178] 100 9.73 × 109 8.93 × 109

TOINTGSS [177] 100 8.92 × 102 9.71
TOINTGSS [177] 108 9.64 × 102 9.73
SROSENBR [177, 178] 115 1.38 × 103 3.53
PENALTY2 [177, 178] 118 3.55 × 1011 2.63 × 1011

SPARSINE [177] 119 2.95 × 104 1.46 × 106

SROSENBR [177, 178] 120 1.45 × 103 5.79
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Table 2-10 (Continued)

SROSENBR [177, 178] 130 1.57 × 103 4.29
PENALTY3 [177] 140 3.85 × 108 1.47
PENALTY2 [177, 178] 161 1.93 × 1015 1.04 × 1015

TQUARTIC [177] 165 8.10 × 10−1 1.81 × 103

SROSENBR [177, 178] 175 2.11 × 103 2.31 × 101

PENALTY2 [177, 178] 192 9.51 × 1017 5.52 × 1017

TQUARTIC [177] 193 8.10 × 10−1 2.69 × 103

ARGLINA [177, 178] 250 1.25 × 102 2.50 × 102

ARGLINB [177, 178] 250 4.11 × 1016 1.25 × 102

CHNROSNB [177, 180] 250 5.46 × 103 1.04 × 10−9

CHROSEN [94] 250 4.98 × 103 4.90 × 10−3

COSINE [177] 250 2.19 × 102 −2.49 × 102

CURLY30 [177] 250 −2.91 × 10−4 −2.50 × 104

PENALTY2 [177, 178] 300 2.29 × 1027 1.78 × 1027

TOINTTRIG [184] 350 1.04 × 101 −1.53 × 106

COSINE [177] 220 1.92 × 102 −2.19 × 102

ROSENBROCK [177, 178] 250 1.01 × 105 2.16 × 102

GENROSE [177] 320 1.21 × 103 2.03 × 102

ARGLINA [177, 178] 500 2.50 × 103 5.00 × 102

ARGLINA [177, 178] 600 3.00 × 103 6.00 × 102

PENALTY3 [177] 800 4.09 × 1011 1.11

Figures 2-10 and 2-11 present the Performance Profile and Data Profile of the tested
derivative-free optimization methods, where the values of 𝜏 are 10−1, 10−3, and 10−5.
The method proposed in this section (for simplicity, labeled as “Model (optimality)” in
the figures) achieves the best numerical performance on such problems and accuracies.

We can observe the performance differences among the compared methods. For
example, in the Performance Profile shown in Figure 2-10, when 𝛼 = 1, our method has
the highest values (50%, 52.73%, and 57.27%) for 𝜏 = 10−1, 𝜏 = 10−3, and 𝜏 = 10−5,
respectively, which means that it successfully solves the largest number of problems
among all the tested methods. The Data Profile in Figure 2-11 also shows that, for all
listed accuracies 𝜏, the method proposed in this section solves the highest proportion of
problems.

In addition, Table 2-11 shows the corresponding problem-solving ratios, where sub-
scripts 1, 2, ⋯ , 10 represent the tenmethods compared in Figures 2-10 and 2-11: “Model
(optimality)” (i.e., the method proposed in this section), “Least Frob. Norm”, “Powell”,
“Least 𝐻2 Norm Update”, “Conn & Toint”, “NEWUOA”, “Fminsearch”, “Fminunc”,
“CMA-ES”, and “NMSMAX”. For example, in the Performance Profile for 𝜏 = 10−5,
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Figure 2-10 Performance Profile of minimizing test problems
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Figure 2-11 Data Profile of minimizing test problems
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Table 2-11 The ratio of the solved problems

The ratio of the solved problems for Performance Profiles when 𝛼 = 2

𝜏 𝜌1(2) 𝜌2(2) 𝜌3(2) 𝜌4(2) 𝜌5(2)

10−1 92.73% 72.73% 84.55% 77.27% 76.36%
10−3 90.00% 55.45% 64.55% 62.73% 47.27%
10−5 90.91% 28.18% 55.45% 48.18% 34.55%

𝜏 𝜌6(2) 𝜌7(2) 𝜌8(2) 𝜌9(2) 𝜌10(2)

10−1 83.64% 6.36% 55.45% 25.45% 46.36%
10−3 70.00% 6.36% 33.64% 2.73% 12.73%
10−5 69.09% 4.55% 4.55% 0.91% 6.36%

The ratio of the solved problems for Data Profiles when 𝛽 = 30

𝜏 𝛿1(30) 𝛿2(30) 𝛿3(30) 𝛿4(30) 𝛿5(30)
10−1 98.18% 83.64% 88.18% 84.55% 83.64%
10−3 81.82% 57.27% 70.91% 69.09% 63.64%
10−5 79.09% 43.64% 49.09% 47.27% 44.55%
𝜏 𝛿6(30) 𝛿7(30) 𝛿8(30) 𝛿9(30) 𝛿10(30)
10−1 90.00% 52.73% 66.36% 59.09% 68.18%
10−3 76.36% 50.00% 27.27% 21.82% 50.91%
10−5 64.55% 43.64% 16.36% 4.55% 50.00%
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the method proposed in this section solves 90.91% of the problems when 𝛼 = 2, which
is more than any other method. Furthermore, under a maximum of 30(𝑛 + 1) function
evaluations and with accuracy 𝜏 = 10−5, the Data Profile indicates that our method
solves 79.09% of the problems, approximately 15% more than the second-best algo-
rithm (NEWUOA). The above profiles fully demonstrate the advantages of the model
and method proposed in this section.

2.3.5 Summary

In this section, we analyzed and improved the Conn-Toint model using trust-region iter-
ations and proposed a new derivative-free optimization approximation model by incor-
porating the optimality of the iteration point. This section utilizes trust-region iteration
to help construct interpolation models. We identified and exploited more relationships
between optimality and interpolation, provided the motivation for the method proposed
in this section, analyzed its convexity, and explained how to obtain the coefficients of
the proposed quadratic model in an implementation-friendly way. Numerical results
demonstrate the advantages of the proposed model and method.

Beyond the classical convergence results for algorithms using general models, new
convergence results for methods using the newly proposed model in this section remain
to be studied further. It is also valuable to investigate the optimal number of interpolation
points for constructing the model proposed in this section. Another potential direction
is to explore the corresponding handling in the case of unsuccessful current iterations.

2.4 Sufficient Conditions for Reducing the Distance Between Minimizers of
Nonconvex Quadratic Functions in a Trust Region

This section analyzes sufficient conditions under which the distance betweenminimizers
of nonconvex quadratic functions within a trust region decreases after two iterations. We
also provide some examples corresponding to the theoretical results.

We know that trust-regionmethods obtain the next iterate by solving the subproblem

min
𝒙∈ℜ𝑛 Model(𝒙)

s. t. ‖𝒙 − 𝒙𝑐‖2 ≤ Δ𝑘

where 𝒙𝑐 ∈ ℜ𝑛 is the center of the trust region ℬΔ𝑘(𝒙𝑐) = {𝒛 ∈ ℜ𝑛, ‖𝒛 − 𝒙𝑐‖2 ≤
Δ𝑘}, and Δ𝑘 > 0 is the trust-region radius at iteration 𝑘. The function Model is a
quadratic model approximating the objective function to be minimized. The notation
Model is used here to distinguish the general model function from the functions 𝑓 and
𝑄 used later. Therefore, quadratic models play a crucial role in generating the next
iterate. This section considers the distance between the minimizers of two nonconvex
quadratic functions within their respective trust regions. This analysis is motivated by
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the observation that in trust-region methods using quadratic models, the model’s role is
essentially to provide a minimizer that approximates that of the true objective function.

We aim to investigate the conditions under which two quadratic models 𝑓 and 𝑄
yieldminimizers within their respective trust regionswhose distance is reduced after one
iteration. This will be presented in Theorems 2.29 and 2.31. These results help guide the
iterative correction of quadratic models and inform model selection in both derivative-
based and derivative-free trust-region methods [20, 92, 97, 102, 150]. Moreover, we use
concrete examples to show the applicability of our results. For instance, we can directly
use these conditions to determine whether two different models can lead to a reduced
distance between their respective minimizers after iteration.

Please note that the quadratic functions 𝑓 and 𝑄 discussed here refer to the quadratic
model functions used in trust-region algorithms. It is especially important to clarify that
in this section, 𝑓 is not the original objective function, even though in some minimiza-
tion settings it can act as such. In general, we consider both 𝑓 and 𝑄 to be quadratic
models used in trust-region subproblems.

In summary, the distance between minimizers of two nonconvex quadratic functions
within their respective trust regions can decrease under certain conditions. This section
derives sufficient conditions for such behavior.

In what follows, we assume that 𝒙1 ∈ ℜ𝑛 and 𝒙̃1 ∈ ℜ𝑛 are the minimizers of
the nonconvex quadratic functions 𝑓 and 𝑄, respectively, within trust regions ℬΔ1(𝒙0)
and ℬΔ̃1(𝒙0). Likewise, 𝒙2 and 𝒙̃2 are the minimizers of 𝑓 and 𝑄 within trust regions
ℬΔ2(𝒙1) and ℬΔ̃2(𝒙̃1), respectively, where 𝒙0 ∈ ℜ𝑛 is the initial point (or the center of
the first trust region), and Δ1, Δ̃1, Δ2, Δ̃2 ∈ ℜ+ are the corresponding trust-region radii.
In other words, there exist real parameters 𝜔1, 𝜔̃1, 𝜔2, 𝜔̃2 > 0 such that

⎧⎪
⎨
⎪⎩

𝒙1 − 𝒙0 = − (∇2𝑓 + 𝜔1𝑰)
−1 ∇𝑓(𝒙0),

𝒙̃1 − 𝒙0 = − (∇2𝑄 + 𝜔̃1𝑰)
−1 ∇𝑄(𝒙0)

(2-45)

and
⎧⎪
⎨
⎪⎩

𝒙2 − 𝒙1 = − (∇2𝑓 + 𝜔2𝑰)
−1 ∇𝑓(𝒙1),

𝒙̃2 − 𝒙̃1 = − (∇2𝑄 + 𝜔̃2𝑰)
−1 ∇𝑄(𝒙̃1),

(2-46)

where Δ1 = ‖𝒙1 − 𝒙0‖2, Δ̃1 = ‖𝒙̃1 − 𝒙0‖2, Δ2 = ‖𝒙2 − 𝒙1‖2, Δ̃2 = ‖𝒙̃2 − 𝒙1‖2, and
∇2𝑓 + 𝜔1𝑰 ⪰ 0, ∇2𝑄 + 𝜔̃1𝑰 ⪰ 0, ∇2𝑓 + 𝜔2𝑰 ⪰ 0, ∇2𝑄 + 𝜔̃2𝑰 ⪰ 0.

Assumption 2.27. Assume that 𝑓 and 𝑄 are nonconvex quadratic functions, with ∇2𝑓 +
𝜔2𝑰 ≻ 0, ∇2𝑄 + 𝜔̃2𝑰 ≻ 0, and 𝒙̃1 ≠ 𝒙1.

Remark 2.10. For simplicity, the same symbols used across different results in this sec-
tion may denote objects of different dimensions. Also, 𝑨 ≻ 0 denotes that the matrix 𝑨
is positive definite.
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We now state the question under consideration.
Question. Under Assumption 2.27, for 0 ≤ 𝜌 ≤ 1, under what sufficient conditions do
the minimizers of the quadratic functions 𝑓 and 𝑄 satisfy

‖𝒙̃2 − 𝒙2‖2 ≤ 𝜌 ‖𝒙̃1 − 𝒙1‖2 ? (2-47)

2.4.1 Distance Analysis of Minimizers of Quadratic Functions within a Trust Region

We now provide results on the distance between minimizers of quadratic functions.

Proposition 2.28. The difference between minimizers satisfies

𝒙̃2 −𝒙2 = 𝜔̃1 (∇2𝑄 + 𝜔̃2𝑰)
−1

(𝒙̃1 − 𝒙0)−𝜔1 (∇2𝑓 + 𝜔2𝑰)
−1

(𝒙1 − 𝒙0)+(𝒙̃1 − 𝒙1) .

Proof. From (2-45) and (2-46), we have

𝒙2 − 𝒙1 = − (∇2𝑓 + 𝜔2𝑰)
−1 ∇𝑓(𝒙1)

= − (∇2𝑓 + 𝜔2𝑰)
−1

(∇𝑓(𝒙0) + ∇2𝑓 ⋅ (𝒙1 − 𝒙0))
= − (∇2𝑓 + 𝜔2𝑰)

−1
(− (∇2𝑓 + 𝜔1𝑰) (𝒙1 − 𝒙0) + ∇2𝑓 ⋅ (𝒙1 − 𝒙0))

= 𝜔1 (∇2𝑓 + 𝜔2𝑰)
−1

(𝒙1 − 𝒙0)
and

𝒙̃2 − 𝒙̃1 = 𝜔̃1 (∇2𝑄 + 𝜔̃2𝑰)
−1

(𝒙̃1 − 𝒙0) ,
from which the result follows directly by computation.

Theorem 2.29 (Sufficient and Necessary Condition in the 1-D Case). Assume that As-
sumption 2.27 holds, the dimension 𝑛 = 1, and 𝜅 ∶= 𝒙1−𝒙0

𝒙̃1−𝒙1
∈ ℜ, then (2-47) holds for

0 ≤ 𝜌 ≤ 1 if and only if

{
(∇2𝑄 + 𝜔̃2) 𝜔1 > (∇2𝑓 + 𝜔2) 𝜔̃1,
𝜅1 ≤ 𝜅 ≤ 𝜅2,

(2-48)

or

{
(∇2𝑄 + 𝜔̃2) 𝜔1 < (∇2𝑓 + 𝜔2) 𝜔̃1,
𝜅2 ≤ 𝜅 ≤ 𝜅1,

(2-49)

where
⎧⎪
⎪
⎨
⎪
⎪⎩

𝜅1 = (∇2𝑓 + 𝜔2) [(−𝜌 + 1) (∇2𝑄 + 𝜔̃2) + 𝜔̃1]
(∇2𝑄 + 𝜔̃2) 𝜔1 − (∇2𝑓 + 𝜔2) 𝜔̃1

,

𝜅2 = (∇2𝑓 + 𝜔2) [(𝜌 + 1) (∇2𝑄 + 𝜔̃2) + 𝜔̃1]
(∇2𝑄 + 𝜔̃2) 𝜔1 − (∇2𝑓 + 𝜔2) 𝜔̃1

.

Proof. The condition that either (2-48) or (2-49) holds is equivalent to

|1 + 𝜔̃1(1 + 𝜅)
∇2𝑄 + 𝜔̃2

− 𝜔1𝜅
∇2𝑓 + 𝜔2 | ‖𝒙̃1 − 𝒙1‖2 ≤ 𝜌 ‖𝒙̃1 − 𝒙1‖2 ,

which follows directly from basic computation.
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Corollary 2.30. Assume that Assumption 2.27 holds, the problem dimension is 𝑛 = 1,
and 𝜅 ∶= 𝒙1−𝒙0

𝒙̃1−𝒙1
∈ ℜ. If −1 < 𝜅 < 0, i.e., 𝒙̃1 ≤ 𝒙0 < 𝒙1 or 𝒙1 < 𝒙0 ≤ 𝒙̃1, then there

exists no 0 < 𝜌 < 1 such that (2-47) holds.

𝒙̃1 𝒙0 𝒙1

𝒙1 𝒙0 𝒙̃1

Figure 2-12 Distribution of 𝒙𝑘−1, 𝒙𝑘, 𝒙̃𝑘 corresponding to Corollary 2.30

Proof. Given 𝜔1 > 0, 𝜔̃1 > 0, 𝐺 > 0, 𝐻 > 0, 𝜌 > 0, −1 ≤ 𝜅 ≤ 0, we have

−𝜌 ≤ 1 + 𝜔̃1(1 + 𝜅)
𝐺 − 𝜔1𝜅

𝐻 ≤ 𝜌

which is equivalent to

𝜌 ≥ 𝐺𝐻 − 𝐺𝜅𝜔1 + 𝐻𝜅𝜔̃1 + 𝐻𝜔̃1
𝐺𝐻 ≥ 1. (2-50)

Thus, the conclusion follows from (2-50).

Remark 2.11. Figure 2-12 illustrates the case described in Corollary 2.30.

Theorem 2.31 (Sufficient Condition for General 𝑛-Dimensional Case with
Diagonal Hessian). Assume that Assumption 2.27 holds, and define 𝜿 ∶=
Diag {𝜅[1], 𝜅[2], ⋯ , 𝜅[𝑛]} ∈ ℜ𝑛×𝑛 such that 𝜿 (𝒙̃1 − 𝒙1) = 𝒙1 − 𝒙0, and assume
∇2𝑓 and ∇2𝑄 are diagonal matrices. If for any 𝑖 ∈ {1, 2, ⋯ , 𝑛}, we have

{
(∇2𝑄[𝑖] + 𝜔̃2) 𝜔1 > (∇2𝑓 [𝑖] + 𝜔2) 𝜔̃1,
𝜅[𝑖]

1 ≤ 𝜅[𝑖] ≤ 𝜅[𝑖]
2

or

{
(∇2𝑄[𝑖] + 𝜔̃2) 𝜔1 < (∇2𝑓 [𝑖] + 𝜔2) 𝜔̃1,
𝜅[𝑖]

2 ≤ 𝜅[𝑖] ≤ 𝜅[𝑖]
1

then (2-47) holds, where the superscript [𝑖] denotes the 𝑖th diagonal element of the
matrices ∇2𝑓 or ∇2𝑄, or the 𝑖th entry of vectors 𝜅1 and 𝜅2, respectively.

Proof. We have

‖𝒙̃2 − 𝒙2‖2

= ‖(𝑰 + 𝜔̃1 (∇2𝑄 + 𝜔̃2𝑰)
−1 (𝑰 + 𝜿) − 𝜔1 (∇2𝑓 + 𝜔2𝑰)

−1 𝜿) (𝒙̃1 − 𝒙1)‖2

≤ ‖𝜌 (𝒙̃[1]
1 − 𝒙[1]

1 , ⋯ , 𝒙̃[𝑛]
1 − 𝒙[𝑛]

1 )
⊤

‖2
= 𝜌‖𝒙̃1 − 𝒙1‖2,
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where the superscript [𝑖] denotes the 𝑖-th component of the corresponding vector. This
holds because

|1 + 𝜔̃1
1 + 𝜅[𝑖]

∇2𝑄[𝑖] + 𝜔̃2
− 𝜔1

𝜅[𝑖]

∇2𝑓 [𝑖] + 𝜔2 | ≤ 𝜌, ∀ 𝑖 = 1, ⋯ , 𝑛.

Based on the above, the conclusion is proved.

Corollary 2.32. Suppose Assumption 2.27 holds and that 𝜿 ∶=
Diag {𝜅[1], 𝜅[2], ⋯ , 𝜅[𝑛]} ∈ ℜ𝑛×𝑛 satisfies 𝜿 (𝒙̃1 − 𝒙1) = 𝒙1 − 𝒙0. If for all 𝑖,
−1 < 𝜅[𝑖] < 0, i.e., 𝒙̃[𝑖]

1 ≤ 𝒙[𝑖]
0 < 𝒙[𝑖]

1 or 𝒙[𝑖]
1 < 𝒙[𝑖]

0 ≤ 𝒙̃[𝑖]
1 , then there does not exist

0 < 𝜌 < 1 such that (2-47) holds.

𝒙̃1

𝒙0

𝒙1

𝒙1

𝒙0

𝒙̃1

Figure 2-13 Distribution of 𝒙𝑘−1, 𝒙𝑘, 𝒙̃𝑘 corresponding to Corollary 2.32

Proof. The conclusion follows directly by applying Corollary 2.30 componentwise.

Remark 2.12. Figure 2-13 illustrates the scenario described in Corollary 2.32.

2.4.2 Example

We present the following example to illustrate the above results.

Example 2.7. In this example, we illustrate the case where the dimension is 𝑛 = 2, the
quadratic models have diagonal Hessian matrices, and 𝜿 has different nonzero compo-
nents.

We consider
⎧⎪
⎪
⎨
⎪
⎪⎩

𝑓(𝒙) = −1
2𝒙⊤

(
1 0
0 2)

𝒙 + (
1
7, 5

3)
⊤

𝒙,

𝑄(𝒙) = −1
2𝒙⊤

(
1 0
0 1)

𝒙.
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Additionally, 𝒙0 = (1, 1)⊤ , 𝜔1 = 3, 𝜔̃1 = 3, 𝜔2 = 4, 𝜔̃2 = 5, 𝜌 = 1
2 . We compute

𝒙1 = 𝒙0 − (∇2𝑓(𝒙0) + 𝜔1𝑰)
−1 ∇𝑓 =

(

10
7
4
3 )

,

𝒙̃1 = 𝒙0 − (∇2𝑄(𝒙0) + 𝜔̃1𝑰)
−1 ∇𝑄 =

(

3
2
3
2)

and

𝜿 =
⎛
⎜
⎜
⎜
⎝

10
7 −1

3
2 − 10

7
0

0
4
3 −1
3
2 − 4

3

⎞
⎟
⎟
⎟
⎠

=
(

6 0
0 2)

.

Then we have

{
(∇2𝑄[1] + 𝜔̃2) 𝜔1 = 12 > 9 = (∇2𝑓 [1] + 𝜔2) 𝜔̃1,
𝜅[1]

1 ≤ 𝜅[1] ≤ 𝜅[1]
2

and

{
(∇2𝑄[2] + 𝜔̃2) 𝜔1 = 12 > 6 = (∇2𝑓 [2] + 𝜔2) 𝜔̃1,
𝜅[2]

1 ≤ 𝜅[2] ≤ 𝜅[2]
2 ,

where
⎧⎪
⎪
⎨
⎪
⎪⎩

𝜅[1]
1 = (∇2𝑓 [1] + 𝜔2) [(−𝜌 + 1) (∇2𝑄[1] + 𝜔̃2) + 𝜔̃1]

(∇2𝑄[1] + 𝜔̃2) 𝜔1 − (∇2𝑓 [1] + 𝜔2) 𝜔̃1
= 5,

𝜅[1]
2 = (∇2𝑓 [1] + 𝜔2) [(𝜌 + 1) (∇2𝑄[1] + 𝜔̃2) + 𝜔̃1]

(∇2𝑄[1] + 𝜔̃2) 𝜔1 − (∇2𝑓 [1] + 𝜔2) 𝜔̃1
= 9,

⎧⎪
⎪
⎨
⎪
⎪⎩

𝜅[2]
1 = (∇2𝑓 [2] + 𝜔2) [(−𝜌 + 1) (∇2𝑄[2] + 𝜔̃2) + 𝜔̃1]

(∇2𝑄[2] + 𝜔̃2) 𝜔1 − (∇2𝑓 [2] + 𝜔2) 𝜔̃1
= 5

3,

𝜅[2]
2 = (∇2𝑓 [2] + 𝜔2) [(𝜌 + 1) (∇2𝑄[2] + 𝜔̃2) + 𝜔̃1]

(∇2𝑄[2] + 𝜔̃2) 𝜔1 − (∇2𝑓 [2] + 𝜔2) 𝜔̃1
= 3.

Thus, the sufficient condition is satisfied. Furthermore, we have

𝒙̃2 − 𝒙2

= 𝜔̃1 (∇2𝑄 + 𝜔̃2𝑰)
−1

(𝒙̃1 − 𝒙0) − 𝜔1 (∇2𝑓 + 𝜔2𝑰)
−1

(𝒙1 − 𝒙0) + (𝒙̃1 − 𝒙1)

=
(

1
56
1
24)

,

and hence

‖𝒙̃2 − 𝒙2‖2 =
√

29
2

84 < 1
2

√
29
2

21 = 𝜌 ‖𝒙̃1 − 𝒙1‖2 .

The following example illustrates numerical observations in the one-dimensional
case 𝑛 = 1.
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Example 2.8. We attempt to numerically observe the probability that the parameters
satisfy the conditions in Theorem 2.29, focusing on the case where 𝑛 = 1. We perform
numerical experiments using Mathematica software.

Specifically, we integrate 𝜔2 and 𝜔̃2 over the intervals [0, 𝑞𝜔1] and [0, 𝑞𝜔̃1], respec-
tively, where 𝑞 is a non-negative real parameter. The resulting value is then divided by
𝑞2𝜔1𝜔̃1 to represent the probability, i.e.,

Prob(𝜌) = 1
𝑞2𝜔1𝜔̃1 ∫

𝑞𝜔1

0 ∫
𝑞𝜔̃1

0
Boole

[
∇2𝑄 + 𝜔̃2 ≥ −

(𝜅 + 1) 𝜔̃1 (∇2𝑓 + 𝜔2)
(𝜌 + 1) (𝜔2 + ∇2𝑓) − 𝜅𝜔1 ]

Boole
[

∇2𝑄 + 𝜔̃2 ≤
(𝜅 + 1) 𝜔̃1 (∇2𝑓 + 𝜔2)

(𝜌 − 1) (𝜔2 + ∇2𝑓) + 𝜅𝜔1 ]
𝑑𝜔̃2𝑑𝜔2,

where Boole(⋅) denotes a Boolean function that outputs 0 or 1.
Note that in this example, we define the constants as follows: ∇2𝑄 = −1, ∇2𝑓 = −2,

𝜔1 = 3, 𝜔̃1 = 3, 𝜅 = −2, and 𝑞 = 10−3, 10−2, 10−1, 1, 10, 102, 103.

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0.05

0.10

0.15

0.20

0.25

Probability

q=0.001

q=0.01
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q=1

q=10

q=100

q=1000

Figure 2-14 Numerical results for Example 2.8

Figure 2-14 shows the numerical results of the function Prob(𝜌) as a function of the
parameter 𝜌. Different curves correspond to different values of 𝑞. From Figure 2-14,
we observe that in this one-dimensional example, the probability of finding 𝜔2 and 𝜔̃2
such that distance reduction is achieved is at most approximately 25%.

2.4.3 Conclusion

This section analyzed sufficient conditions under which the distance between the trust-
region minimizers of two nonconvex quadratic functions decreases after one iteration.
Note that quadratic functions are commonly used to locally approximate the objective
function in numerical optimization algorithms, yet in most nonlinear cases, an exact
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model is not attainable. If we have multiple different quadratic surrogate models, the
results in this section provide a way to analyze and reduce the distance between the
minimizers of such models.

Moreover, the examples in this section show that in certain cases, the distance be-
tween the minimizers of two quadratic models may increase after one iteration. This
suggests that in trust-region methods, the quadratic model should be updated after each
iteration, even if the model is nonconvex and the trial step lies on the boundary of the
trust region.
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Chapter 3 Derivative-Free Optimization with Transformed
Objective Functions and Algorithm Based on least Frobenius Norm

Updating Quadratic Models

3.1 Derivative-Free Optimization with Transformed Objective Functions

This chapter focuses on how to solve derivative-free optimization problems with trans-
formed objective functions. The unconstrained derivative-free optimization problem
proposed and studied in this chapter has the following general form

min
𝒙∈ℜ𝑛

𝑓(𝒙), (3-1)

where the black-box function 𝑓 can provide the function values of 𝑚 points in one it-
eration/query step, and the query scheme is given in Assumption 3.1. In addition, in
the same iteration/query step, the 𝑚 query points share the same transformation of the
objective function. It transforms 𝑓 into 𝑓𝑘 ∶= 𝑇𝑘 ∘ 𝑓 , where the transformation 𝑇𝑘
depends only on the current (𝑘-th) step, as defined in Definition 3.2. Note that what we
ultimately want to minimize is still the original objective function 𝑓 .

Assumption 3.1 (Query scheme of derivative-free optimization with transformed objec-
tive functions). One query can obtain the function output values corresponding to 𝑚
points, and this batch of query points can be selected by the optimization algorithm.
Figure 3-1 shows the query scheme.

Input: 𝒚1, ⋯ , 𝒚𝑚 The 𝑘-th query to the black-box Output: 𝑓𝑘(𝒚1), ⋯ , 𝑓𝑘(𝒚𝑚)

Figure 3-1 Query oracle of derivative-free optimization with transformed objective functions:
the 𝑘-th query, for the queried points 𝒚1, ⋯ , 𝒚𝑚

It can be observed that the query scheme in Assumption 3.1 has two basic features.
One feature is querying a set of points simultaneously, and the other is that the simul-
taneously queried points share the same transformation. Note that in derivative-free
optimization, queries usually cannot be performed in a very short time or at low cost, so
we also call it expensive optimization in most scenarios. Such a query scheme usually
corresponds to batch interactive queries or simulation mechanisms. Moreover, more
application examples will be given at the end of Section 3.1. It should be pointed out
that, to the best of our knowledge, although derivative-free optimization with trans-
formed objective functions has a wide range of applications, the related concepts and
research have not yet been deeply and concretely explored. Algorithms designed for
such problems, especially those based on model functions, are limited. This chapter
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aims to propose such transformed problems and provide some preliminary results when
solving them using algorithms based on underdetermined quadratic models. We will
also answer how least Frobenius norm updating quadratic models and corresponding
algorithms are affected by the transformations.

Definition 3.2. Let 𝑇 be a transformation from ℜ to ℜ, we denote the transformed
function by 𝑇 ∘ 𝑓 , which satisfies: for a given function 𝑓 and any 𝒙 ∈ ℜ𝑛, (𝑇 ∘ 𝑓)(𝒙) =
𝑇 (𝑓(𝒙)).

Each transformation discussed below is a transformation from ℜ to ℜ. The trans-
formed objective function plays an important role in stochastic, noisy, or encrypted
derivative-free/black-box optimization1. For example, in encrypted black-box optimiza-
tion, different transformations can be regarded as different encryptions formed by adding
different noise according to differential privacy theory [195–200]. Section 3.5.4 will
give details of solving a special class of encrypted engineering design optimization
problems. Another example is cloud-based distributed optimization problems, which
aim to minimize local and cloud-based composite objective functions while protecting
the privacy of the corresponding objective functions [201]. In addition, there are also
encrypted black-box optimization problems in the field of personal health [202]. Fur-
thermore, Kusner et al. discussed differential privacy Bayesian optimization [203].

In fact, derivative-free optimization with transformed objective functions has var-
ious applications, and encrypted black-box optimization is just one instance. For ex-
ample, problems with regularization functions whose coefficients vary with iterations
belong to derivative-free optimization problems with transformed objective functions.
Grapiglia, Yuan, and Yuan proposed a derivative-free trust-region algorithm for com-
posite nonsmooth optimization [120]. For discussions on minimizing transformed ob-
jective functions, one may review the work of Deng and Ferris [204], which provides
discussion on minimizing stochastic objective functions using the UOBYQA algorithm
[137].

In addition to characterizing the changes of interpolation models when transforma-
tions or perturbations exist in the objective function at each iteration, this chapter also
focuses on whether the minimizer of the quadratic model within the trust region will
change.

Remark 3.1. In fact, some derivative-free methods do not rely on function values (abso-
lute magnitude), such as Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[131], the Nelder-Mead method [51] (using only comparison queries), and other algo-

1The general form of unconstrained encrypted black-box optimization problems can be expressed as min
𝒙∈ℜ𝑛

𝑓(𝒙),
where 𝑓 is an encrypted black-box function. The query cost of 𝑓 is expensive, and its output values are encrypted
into 𝑓𝑘 by adding noise.
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rithms that only use Boolean function comparisons [205]. This chapter focuses on de-
veloping and improving model-based algorithms, which rely on function values to solve
problems with transformed objective functions. We will provide a new perspective to
characterize and understand the impact of transformations on the objective function,
the model, and the algorithm when using function-value-dependent derivative-free op-
timization methods.

Considering solving the proposedDFOTOproblem using derivative-free trust-region
algorithms with least Frobenius norm updating quadratic models, this chapter will make
the following contributions. We will modify Powell’s updating formula of least Frobe-
nius norm updating quadratic models [93] tomatch the proposed query scheme for use in
model-based trust-regionmethodswhen solving transformed problems. Wewill analyze
the least Frobenius norm updating interpolation model when minimizing transformed
objective functions. We will propose optimality-preserving transformations and give
and prove necessary and sufficient conditions for such transformations. We will dis-
cuss positive monotonic transformations. We will give analytical expressions of least
Frobenius norm updating quadratic models for affine transformed objective functions,
analyze their interpolation errors, and provide further discussion. This chapter will also
give preliminary convergence analysis for first-order critical points. The numerical re-
sults of this chapter will demonstrate the necessity of using the modified model up-
dating formula and show that our method can efficiently and robustly solve most test
problems and a presented practical problem, even when the transformations alter the
optimality of the model function. To the best of our knowledge, this is the first work
to minimize transformed objective functions using model-based algorithms that require
function value information (rather than function value comparisons). Notably, the per-
formance of the corresponding methods is satisfactory when solving order-preserving
or optimality-preserving transformation problems.

The structure of this chapter is as follows. In Section 3.2, we present our algo-
rithm and query scheme, which include least Frobenius norm updating quadratic mod-
els, the trust-region subproblem, and the related definitions of optimality-preserving
transformations. The existence of optimality-preserving transformations, except for
translation transformations, is proven. The necessary and sufficient conditions of such
transformations are also given in this section. In Section 3.3, we introduce the proper-
ties of positive monotonic transformations, especially affine transformations. We find
that affine transformations with (non-trivial) positive multiplicative coefficients are not
optimality-preserving transformations. When the objective function is affinely trans-
formed, we provide the corresponding transformation of the least Frobenius norm up-
dating quadratic model function. Section 3.4 shows the coefficients of fully linear model
interpolation errors when solving problems with affine transformations. Section 3.4
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also analyzes the convergence when the algorithm minimizes the transformed objec-
tive function under provable guarantees of the model-based derivative-free framework.
Section 3.5 presents numerical results of minimizing test examples, as well as perfor-
mance profiles and sensitivity profiles of solving a set of test problems with random
affine transformed objective functions. Such numerical results support our theoretical
analysis, and the results of solving the optimal design problem of traveling-wave tube
encryption engineering also demonstrate the practical advantages of our method. At
the end of this chapter, we propose the “moving target” derivative-free optimization
problem.

3.2 Algorithm, Query Scheme and Optimality-Preserving Transformation

Here we introduce our algorithm and query scheme and present in detail the least Frobe-
nius norm updating quadratic models used in derivative-free optimization. In addition,
we introduce the trust-region subproblem in model-based derivative-free algorithms.
We also give some basic concepts, including optimality-preserving transformations.

3.2.1 Model-Based Trust-Region Algorithms and Query Schemes

We give some details of the model-based trust-region algorithms and query schemes
that will be used to solve problem (3-1). We also explain the reasons for choosing such
a framework, interpolation model functions, and query schemes.

The basic framework of model-based derivative-free trust-region algorithms (for the
transformed objective function) is shown in Algorithm 5. For simplicity, some details
are omitted in the algorithm framework. One can find the algorithmic framework of
model-based derivative-free trust-region algorithms for minimizing the original objec-
tive function in the monograph by Conn, Scheinberg, and Vicente [20]. As shown in
Assumption 3.1 and Table 3-1, the queries in Algorithm 5 are performed on a batch
of points sharing the same transformation. The functions 𝑓1, ⋯ , 𝑓𝑘, ⋯ represent the
transformed objective functions corresponding to transformations 𝑇1, ⋯ , 𝑇𝑘, ⋯ at steps
1, ⋯ , 𝑘, ⋯, respectively. When solving the trust-region subproblem, the center of the
trust region is usually set to 𝒙opt, the point with the least function value among the
current iteration interpolation points. To provide a simplified algorithmic framework,
we use 𝒙𝑘, and in (3-10) we write it as 𝒙opt. When updating the 𝑘-th interpolation
set, we usually discard the worst interpolation point 𝒚𝑡 at this step and replace it with
𝒚new(= 𝒙𝑘−1 + 𝒅𝑘−1), which is the newly added interpolation point. Algorithm 5 adopts
the traditional Λ-poisedness in model-based trust-region derivative-free methods, and
the related verification refers to the same steps in the traditional algorithm framework
of model-based trust-region derivative-free methods [20].

88



Chapter 3 Derivative-Free Optimization with Transformed Objective Functions and Algorithm Based on least
Frobenius Norm Updating Quadratic Models

Algorithm 5 Framework of model-based derivative-free trust-region algorithm for
minimizing transformed objective functions

Given an initial point 𝒙int and an initial interpolation point set 𝒳1 satisfying 𝒙int ∈ 𝒳1,
and

𝑓1(𝒙int) = min
𝒚∈𝒳1

𝑓1(𝒚).

Choose an initial trust-region radius Δ1. Let 𝑘 = 1.
Step 1. (Construct interpolation model)

Construct a quadratic model 𝑄𝑘 satisfying the interpolation condition 𝑄𝑘(𝒚) =
𝑓𝑘(𝒚), 𝒚 ∈ 𝒳𝑘.
Step 2. (Trust-region iteration)
Solve the trust-region subproblem

min
𝒅∈ℜ𝑛

𝑄𝑘(𝒙𝑘 + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ𝑘

and obtain its solution 𝒅𝑘.
If 𝒙𝑘 + 𝒅𝑘 is accepted, e.g., 𝑓𝑘+1(𝒙𝑘 + 𝒅𝑘) < 𝑓𝑘+1(𝒙𝑘), then set 𝒙𝑘+1 = 𝒙𝑘 + 𝒅𝑘;
otherwise, set 𝒙𝑘+1 = 𝒙𝑘.
Step 3. (Manage interpolation set)
Check whether the interpolation point set is poised. If necessary, perform model
improvement steps to enhance the poisedness of the interpolation set. Update the
interpolation point set to 𝒳𝑘+1 so that it contains 𝒙𝑘+1.
Step 4. (Update)
Update the trust-region radius to obtain Δ𝑘+1 according to the performance of 𝒅𝑘 and
the poisedness of the interpolation set. Let 𝑘 = 𝑘 + 1. Go to Step 1.

We introduce here the query procedure for solving problems with transformed ob-
jective functions, which will be used in the subsequent discussion. We synchronously
query the first 𝑚 interpolation points. Once a new iterate is obtained, update the in-
terpolation set according to the process shown in Table 3-12, and obtain queries of
function values at the points in the new interpolation set. Note that each query set con-
tains 𝑚 points. The query set can be updated in different ways, for example, 𝒳𝑘 ∶=
𝒳𝑘−1\{arg max

𝒚∈𝒳𝑘−1
‖𝒚 − 𝒙𝑘‖2} ∪ {𝒙𝑘} or 𝒳𝑘 ∶= 𝒳𝑘−1\{arg max

𝒚∈𝒳𝑘−1
𝑓𝑘−1(𝒚)} ∪ {𝒙𝑘}.

Note that the interpolationmodel function inAlgorithm 5 is the least Frobenius norm
updating quadratic model. Next, we provide the reasons for choosing the query scheme

2We refer to the interpolation point set as the “interpolation set.”
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Table 3-1 Query and evaluation in algorithms for solving problems with transformed objective
functions

Step Set of queried points Set of function-value queries

1 𝒳1 {𝑓1(𝒚), ∀ 𝒚 ∈ 𝒳1}
2 𝒳2 {𝑓2(𝒚), ∀ 𝒚 ∈ 𝒳2}
⋮ ⋮ ⋮
𝑘 𝒳𝑘 {𝑓𝑘(𝒚), ∀ 𝒚 ∈ 𝒳𝑘}
⋮ ⋮ ⋮

shown in Table 3-1 when using Algorithm 5. First, as can be found in Section 3.2.2,
when we use Algorithm 5 based on the least Frobenius norm updating quadratic model
to solve derivative-free optimization problems with transformed objective functions, we
only need to change the vector on the right-hand side of the interpolation equations (see
the details in (3-6)), in which case handling the transformations is very simple. Sec-
ond, although the transformations of the function-value outputs change across different
iterations, we still have reason to trust the points that were queried in the previous iter-
ation and rely on them to find the next iterate. Otherwise, if the algorithm completely
re-searches all query points, our approach will exhibit discontinuities in the iterations.
In practice, our theoretical analysis and numerical results support above as well.

3.2.2 Least Frobenius Norm Updating Quadratic Models for Transformed Objective
Functions

In fact, an important feature of the class of transformed problems we discuss is that the
corresponding objective function changes with the iteration. Here, “changes with the
iteration” means that the transformation of the objective function depends on the itera-
tion/query step. Therefore, for handling derivative-free optimization with transformed
objective functions, we will present the corresponding least Frobenius norm updating
quadratic model function. The new updating formula should remain valid when the
transformed objective function 𝑓𝑘 changes with the iteration index 𝑘. Note that the
model analyzed in this chapter is the least Frobenius norm updating quadratic model,
rather than the least Frobenius norm quadratic model [156, 160, 189], for which differ-
ent and simpler results will appear in Section 3.3. The efficient and robust numerical
performance motivates us to explore more details of the class of models of interest in
the presence of transformations.

For simplicity, we assume that the poised interpolation set at the 𝑘-th iteration is
𝒳𝑘 = {𝒚1, ⋯ , 𝒚𝑚}. A quadratic model 𝑄𝑘 of the transformed function 𝑓𝑘 is obtained
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by solving the subproblem

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹

s. t. 𝑄(𝒚) = 𝑓𝑘(𝒚), ∀ 𝒚 ∈ 𝒳𝑘

(3-2)

and we define 𝐷𝑘(𝒙) = 𝑄𝑘(𝒙) − 𝑄𝑘−1(𝒙). Then, according to (3-2), we can obtain
𝐷𝑘(𝒙) by solving the subproblem

min
𝐷∈𝒬 ‖∇2𝐷‖

2
𝐹

s. t.
{

𝐷(𝒚𝑖) = 𝑓𝑘(𝒚𝑖) − 𝑓𝑘−1(𝒚𝑖), 𝑖 = 1, ⋯ , 𝑡 − 1, 𝑡 + 1, ⋯ , 𝑚,
𝐷(𝒚new) = 𝑓𝑘(𝒚new) − 𝑄𝑘−1(𝒚new),

(3-3)

because, according to the framework of model-based derivative-free trust-region algo-
rithms, the old 𝒚𝑡 is discarded and replaced by 𝒚new in the current (𝑘-th) iteration [20].
The derivation from (3-2) to (3-3) is direct; in fact, it follows by replacing the function
𝑄(𝒙) − 𝑄𝑘−1(𝒙) with 𝐷(𝒙).

Let 𝜆𝑗 , 𝑗 = 1, 2, ⋯ , 𝑚, be the Lagrange multipliers in the KKT conditions of opti-
mization problem (3-3). As pointed out by Powell [93], they satisfy

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝑚

∑
𝑗=1

𝜆𝑗 = 0,

𝑚

∑
𝑗=1

𝜆𝑗 (𝒚𝑗 − 𝒙0) = 0𝑛,

∇2𝐷𝑘 =
𝑚

∑
𝑗=1

𝜆𝑗 (𝒚𝑗 − 𝒙0) (𝒚𝑗 − 𝒙0)
⊤ ,

(3-4)

where 0𝑛 ∈ ℜ𝑛, and 𝒙0 is a base point used to reduce numerical error, which is set to
the initial input point at the beginning. The quadratic function 𝐷𝑘(𝒙) can be written as

𝐷𝑘(𝒙) = 𝑐 + (𝒙 − 𝒙0)⊤𝒈 + 1
2

𝑚

∑
𝑗=1

𝜆𝑗 ((𝒙 − 𝒙0)⊤(𝒚𝑗 − 𝒙0))
2 , 𝒙 ∈ ℜ𝑛. (3-5)

Once the parameters 𝜆𝜆𝜆⊤ = (𝜆1, ⋯ , 𝜆𝑚)⊤ ∈ ℜ𝑚, 𝑐 ∈ ℜ, and 𝒈 ∈ ℜ𝑛 are determined, we
can determine the unique function 𝐷𝑘(𝒙), thereby obtaining the new quadratic model
function 𝑄𝑘(𝒙). It is easy to see that the coefficients of 𝐷(𝒙) are given by the solution
of the linear system

(
𝑨 𝑿

𝑿⊤ 0)

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆
𝑐
𝒈

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝒓
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎠

,
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where the matrix 0 ∈ ℜ(𝑛+1)×(𝑛+1) is the zero matrix. The elements of the matrices
𝑨 ∈ ℜ𝑚×𝑚 and 𝑿 ∈ ℜ𝑚×(𝑛+1) are, respectively,

𝑨𝑖𝑗 = 1
2 ((𝒚𝑖 − 𝒙0)

⊤
(𝒚𝑗 − 𝒙0))

2

and

𝑿 =
(

1 ⋯ 1
𝒚1 − 𝒙0 ⋯ 𝒚𝑚 − 𝒙0)

⊤

,

where 1 ≤ 𝑖, 𝑗 ≤ 𝑚. The vector 𝒓 ∈ ℜ𝑚 has the form

𝒓 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑓𝑘(𝒚1) − 𝑓𝑘−1(𝒚1)
⋮

𝑓𝑘(𝒚𝑡−1) − 𝑓𝑘−1(𝒚𝑡−1)
𝑓𝑘(𝒚new) − 𝑄𝑘−1(𝒚new)
𝑓𝑘(𝒚𝑡+1) − 𝑓𝑘−1(𝒚𝑡+1)

⋮
𝑓𝑘(𝒚𝑚) − 𝑓𝑘−1(𝒚𝑚)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3-6)

Remark 3.2. The vector 𝒓 is the main difference between the updating formulas for min-
imizing transformed objective functions and for minimizing objective functions without
transformations. This form is very natural and is crucial for obtaining the least Frobe-
nius norm updating quadratic model for transformed objective functions.

We continue to denote the KKT matrix by 𝑾 and write

𝑾 =
(

𝑨 𝑿
𝑿⊤ 0)

.

If 𝑾 is invertible, then 𝜆𝜆𝜆, 𝑐, 𝒈 can be obtained via

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆
𝑐
𝒈

⎞
⎟
⎟
⎟
⎠

= 𝑽

⎛
⎜
⎜
⎜
⎜
⎝

𝒓
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎠

, (3-7)

where 𝑽 = 𝑾 −1. The invertibility of 𝑾 depends on the locations of the interpo-
lation points and is related to the poisedness of the set, which was discussed in depth
by Powell [174]. The initial interpolation points guarantee the invertibility of the ini-
tial 𝑾 , while the invertibility of the iterative 𝑾 and the numerical accuracy of for-
mula (3-7) are ensured iteratively by selecting suitable interpolation points during the
model-improvement steps. This part follows the same discussion and methodology as
in Powell’s work [94, 174]. In the discussion below, we assume that the matrix 𝑾 is
invertible.
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Remark 3.3. If we obtain the 𝑘-th model function by solving

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹 + 𝜎 ‖∇𝑄 − ∇𝑄𝑘−1‖

2
2

s. t. 𝑄(𝒚) = 𝑓𝑘(𝒚), ∀ 𝒚 ∈ 𝒳𝑘

(3-8)

with weight coefficient 𝜎 ≥ 0, then the above results and analysis remain valid, with the
only difference being that 𝑾 becomes

𝑾 =
⎛
⎜
⎜
⎜
⎝

𝑨 𝑿

𝑿⊤ 0 0⊤
𝑛

0𝑛 −𝜎
2 𝑰

⎞
⎟
⎟
⎟
⎠

, (3-9)

where 𝑰 ∈ ℜ𝑛×𝑛 is the identity matrix. In fact, the conclusions of this chapter also apply
to other similar least norm updating quadratic models under different norms, including
the least 𝐻2 norm updating quadratic model given in Chapter 2 and models that take
into account the optimality of the model function and the properties of the previous
trust-region iteration.

We may use the updating formulas for the matrix 𝑽 given by Powell [174]. Ulti-
mately, we obtain 𝐷𝑘(𝒙) of the form (3-5), whose parameters 𝜆𝜆𝜆, 𝑐, and 𝒈 are given by
(3-7), and 𝒓 is given by (3-6). We then obtain the 𝑘-th model 𝑄𝑘 = 𝑄𝑘−1 + 𝐷𝑘.

3.2.3 Trust-Region Subproblem

Model-based derivative-free trust-region algorithms compute a trial step by solving the
trust-region subproblem of the current quadratic model function, namely

min
𝒅∈ℜ𝑛

𝑄𝑘(𝒙opt + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ𝑘.
(3-10)

In (3-10), 𝒙opt denotes the interpolation point in the 𝑘-th interpolation set 𝒳𝑘 with the
optimal function output value.

The framework details of such algorithms can be found in the monograph by Conn,
Scheinberg, and Vicente [20]. One termination condition of the subroutine that solves
the quadratic trust-region subproblem in model-based derivative-free trust-region algo-
rithms is ‖𝒅𝑘‖2 < ̂𝜌𝑘, where 𝒅𝑘 is the solution to the trust-region subproblem (3-10),
and the parameter ̂𝜌𝑘 is the lower bound of the trust-region radius, which is used to keep
sufficient distance between interpolation points; the details are omitted here.

It should be noted that, for derivative-free optimization problems without transfor-
mations, the objective function itself does not change; only the trust region changes as
the iterations increase. However, in derivative-free optimization problems with trans-
formations, as the iterations proceed, both 𝑓𝑘 and the trust region change, the quadratic
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model 𝑄𝑘 is continually updated to approximate 𝑓𝑘, and thus the solution 𝒅𝑘 of the sub-
problem may change according to its definition. In this case, the condition ‖𝒅𝑘‖2 < ̂𝜌𝑘
may not be satisfied at all, which would affect the termination of the algorithm. If the
termination condition is not met, the algorithmic iteration cannot leave the loop of solv-
ing the trust-region subproblem. The number of iterations may grow, implying a high
cost of function-value queries. Moreover, the model-improvement steps of the method
can hardly be invoked, and consequently the algorithm cannot effectively reduce the
interpolation error of the model.

3.2.4 Optimality-Preserving Transformations

In this part, we present the analysis and discussion of optimality-preserving transforma-
tions.

Given a black-box function 𝑓 ∶ ℜ𝑛 → ℜ, if a quadratic function 𝑄 satisfies
𝑄(𝒙) = 𝑓(𝒙), ∀ 𝒙 ∈ 𝒳 , then it is called a quadratic interpolation model of 𝑓 on the
interpolation set 𝒳 ⊂ ℜ𝑛. We should note that each transformation discussed below is
a transformation from ℜ to ℜ. To introduce more details, we first give the following
definition.

Definition 3.3 (least Frobenius norm updating quadratic model of ℎ based on 𝑄𝛼 on 𝒳).
Given a function ℎ ∶ ℜ𝑛 → ℜ, a quadratic function 𝑄𝛼, and a poised set 𝒳 ⊂ ℜ𝑛,
where 𝑛 + 1 ≤ |𝒳| < 1

2(𝑛 + 1)(𝑛 + 2), we call a quadratic model function the least
Frobenius norm updating quadratic model of ℎ based on 𝑄𝛼 on 𝒳 if it is the solution of

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝛼‖

2
𝐹

s. t. 𝑄(𝒚) = ℎ(𝒚), ∀ 𝒚 ∈ 𝒳
(3-11)

We denote the above model by the mapping ℳ𝒳
𝑄𝛼

, i.e., we denote the solution of (3-11)
by ℳ𝒳

𝑄𝛼
(ℎ).

Definition 3.4 (Subproblem of 𝑄 with trust-region radius Δ). Given a point3 𝒙opt ∈ ℜ𝑛,
a quadratic function 𝑄, and Δ ∈ ℜ, we call the problem

min
𝒅∈ℜ𝑛

𝑄(𝒙opt + 𝒅)

s. t. ‖𝒅‖2 ≤ Δ

the subproblem of 𝑄 with trust-region radius Δ and center 𝒙opt. Note that, if it is un-
necessary to emphasize the center, we will omit the word “center” in the corresponding
statements.

We now give the definition of optimality-preserving transformations for models.
3The point 𝒙opt is usually set to be the interpolation point in the interpolation set with the optimal function value.
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Definition 3.5 (Optimality-preserving transformation for models). Assume a poised set
𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛, and let 𝑄𝛼 be a quadratic function. A transformation 𝑇 is
called an optimality-preserving transformation with trust-region radiusΔ if the solution
of the subproblem of the least Frobenius norm updating quadratic model of 𝑓 based on
𝑄𝛼 on 𝒳 is the same as the solution of the subproblem of the least Frobenius norm
updating quadratic model of 𝑇 ∘ 𝑓 based on 𝑄𝛼 on 𝒳 . That is, given a point 𝒙opt ∈ ℜ𝑛,
if

arg min
‖𝒅‖2≤Δ

𝑄orig(𝒙opt + 𝒅) = arg min
‖𝒅‖2≤Δ

𝑄trans(𝒙opt + 𝒅),

where
𝑄orig ∶= ℳ𝒳

𝑄𝛼
(𝑓 ),

𝑄trans ∶= ℳ𝒳
𝑄𝛼

(𝑇 ∘ 𝑓),
then the transformation 𝑇 is called an optimality-preserving transformation with trust-
region radius Δ.

Assumption 3.6. Given a function 𝑓 ∶ ℜ𝑛 → ℜ, 𝒙opt ∈ ℜ𝑛, a quadratic function 𝑄𝛼,
and a poised interpolation set 𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛, where 𝑛 + 1 ≤ |𝒳| = 𝑚 <
1
2(𝑛 + 1)(𝑛 + 2), we assume that 𝒅∗ ∈ ℜ𝑛 is the solution of the subproblem with trust-
region radius Δ for the least Frobenius norm updating quadratic model of the function
𝑓 based on 𝑄𝛼 on 𝒳 , where ‖𝒅∗‖2 < Δ, and we also assume that this model is strictly
convex.

We attempt to present some theoretical results, including necessary and sufficient
conditions for optimality-preserving transformations for models.

Theorem 3.7. Assume that Assumption 3.6 holds. Then a transforma-
tion 𝑇 is an optimality-preserving transformation for models if and only if
(𝑇 (𝑓(𝒚1)), ⋯ , 𝑇 (𝑓(𝒚𝑚)))⊤ is a solution to the linear system

𝑚

∑
𝑗=1

((𝒚𝑗 − 𝒙opt) (𝒚𝑗 − 𝒙opt)
⊤ 𝒅∗

) 𝑽𝑗

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇 (𝑓(𝒚1)) − 𝑄𝛼(𝒚1)
⋮

𝑇 (𝑓(𝒚𝑚)) − 𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ∇2𝑄𝛼𝒅∗

= −
⎛
⎜
⎜
⎜
⎝

𝑽𝑚+2
⋮

𝑽𝑚+𝑛+1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇 (𝑓(𝒚1)) − 𝑄𝛼(𝒚1)
⋮

𝑇 (𝑓(𝒚𝑚)) − 𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− ∇𝑄𝛼(𝒙opt),

(3-12)

where 𝑽 is the inverse of the KKT matrix, and 𝑽𝑗 denotes the 𝑗-th row of 𝑽 .
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Proof. Assume that the least Frobenius norm updating quadratic model of 𝑇 ∘ 𝑓 based
on 𝑄𝛼 on 𝒳 is

𝑄𝑢(𝒙) = 𝑄𝛼(𝒙) + 𝑐𝑢 + (𝒙 − 𝒙opt)
⊤ 𝒈𝑢 + 1

2

𝑚

∑
𝑗=1

(𝜆𝜆𝜆𝑢)𝑗 ((𝒙 − 𝒙opt)
⊤

(𝒚𝑗 − 𝒙opt))
2

.

We obtain

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝑢
𝑐𝑢
𝒈𝑢

⎞
⎟
⎟
⎟
⎠

= 𝑽

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇 (𝑓(𝒚1)) − 𝑄𝛼(𝒚1)
⋮

𝑇 (𝑓(𝒚𝑚)) − 𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and, for simplicity, the base point 𝒙0 appearing in the KKT matrix is set to 𝒙opt. We
know that 𝒅∗ is feasible and satisfies ∇2𝑄𝑢𝒅∗ = −𝒈𝑢, because ‖𝒅∗‖2 < Δ. Combining
(3-4) and the definition of 𝑽 yields the above necessary and sufficient condition for
optimality-preserving transformations for models.

Remark 3.4. Assume that Assumption 3.6 holds. For any 𝑐2 ∈ ℜ, (𝑓 (𝒚1)+𝑐2, ⋯ , 𝑓(𝒚𝑚)+
𝑐2)⊤ is a solution to the linear system (3-12); therefore, the translation transformation
𝑇 satisfying 𝑇 ∘ 𝑓 = 𝑓 + 𝑐2 is an optimality-preserving transformation for models.
This conclusion is consistent with Corollary 3.14. In addition, if |𝒳| ≥ 𝑛 + 2, then by
Theorem 3.7, there exist more optimality-preserving transformations for models.

The solution space of (3-12) contains a linear subspace of translations with di-
mension at least 𝑚 − 𝑛. The least Frobenius norm updating quadratic model used in
NEWUOA by Powell [94] requires 𝑚 ≥ 𝑛 + 2. For Remark 3.4, if 𝑛 + 2 ≤ 𝑚 <
1
2(𝑛 + 1)(𝑛 + 2), the optimality-preserving transformation for models can be other trans-
formations beyond those satisfying

⎛
⎜
⎜
⎜
⎝

𝑇 (𝑓(𝒚1))
⋮

𝑇 (𝑓(𝒚𝑚))

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝑓(𝒚1) + 𝑐2
⋮

𝑓(𝒚𝑚) + 𝑐2

⎞
⎟
⎟
⎟
⎠

(3-13)

for any 𝑐2 ∈ ℜ. In fact, to obtain the fully linear property, the monograph by Conn,
Scheinberg, andVicente [20] points out that at least 𝑛+1 interpolation points are needed.
Below, before proceeding further, we give a natural assumption.

Assumption 3.8. Assume that the homogeneous linear equations of (3-12) with respect
to (𝑇 (𝑓(𝒚1)), ⋯ , 𝑇 (𝑓(𝒚𝑚)))⊤ are linearly independent.

We then obtain the following corollary.
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Corollary 3.9. Assume that Assumption 3.6 and Assumption 3.8 hold. If 𝑚 = 𝑛 + 1,
then a transformation 𝑇 is an optimality-preserving transformation for models if and
only if it satisfies (3-13).

Proof. When Assumption 3.8 holds, if 𝑚 = 𝑛 + 1, then the dimension of the solution
space of (3-12) is 1. Hence the conclusion follows.

Remark 3.5. If the subproblem used to obtain the quadratic model function is chosen
as (3-8), then Theorem 3.7, Corollary 3.9, and the above analysis still apply, with the
corresponding matrix 𝑽 being the inverse of the KKT matrix in (3-9). In addition,
when 𝑚 ≤ 𝑛 and the remaining parts of Assumption 3.6 and Assumption 3.8 hold, a
transformation 𝑇 is an optimality-preserving transformation for models if and only if it
satisfies

⎛
⎜
⎜
⎜
⎝

𝑇 (𝑓(𝒚1))
⋮

𝑇 (𝑓(𝒚𝑚))

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝑓(𝒚1)
⋮

𝑓(𝒚𝑚)

⎞
⎟
⎟
⎟
⎠

.

Considering that if 𝑚 ≤ 𝑛, the solution of (3-12) is unique, the above conclusion holds
directly.

An example of an optimality-preserving transformation for models is as follows:

Example 3.1. Assume that the original black-box objective function is

𝑓(𝑥, 𝑦) = 1
2 ((𝑥 − 𝑦)2 + (𝑥 − 1)2 + (𝑦 − 1)2) ,

where 𝑥 and 𝑦 denote the components of a 2D variable. Moreover, the base point 𝒙0
and the initial interpolation points 𝒚1, 𝒚2, 𝒚3, 𝒚4, 𝒚5 are

𝒙0 =
(

0
0)

, 𝒚1 =
(

0
0)

, 𝒚2 =
(

1
0)

, 𝒚3 =
(

0
1)

, 𝒚4 =
(

−1
0 )

, 𝒚5 =
(

0
−1)

.

In this example, we set the trust-region radius to 10. We have

𝑓(𝒚1) = 1, 𝑓 (𝒚2) = 1, 𝑓 (𝒚3) = 1, 𝑓 (𝒚4) = 3, 𝑓 (𝒚5) = 3, 𝒙(1)
opt = 𝒚1,

and after computing the inverse 𝑽 of the KKT matrix, we obtain

𝜆𝜆𝜆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−4
1
1
1
1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑐 = 1, 𝒈 =
(

−1
−1)

,

as well as
𝑄1(𝑥, 𝑦) = 1 − 𝑥 − 𝑦 + 𝑥2 + 𝑦2.
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We then add the model minimizer in the trust region, i.e., 𝒚new = (1
2 , 1

2)⊤, into the
interpolation set and discard the point 𝒚5. Moreover, we know that 𝒙(2)

opt = 𝒚new; for
simplicity, we set the base point 𝒙0 to 𝒙(2)

opt. The inverse 𝑽new of the new KKT matrix
can be obtained, and we have 𝑓(𝒚new) = 1

4 , 𝑄1(𝒚new) = 1
2 , from which we obtain

𝜆𝜆𝜆+ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
3
1
4
3

−1
3

−8
3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑐+ = −1
4, 𝒈+ =

(
−1

3
−1

3)
,

𝐷(𝑥, 𝑦) = −2
3𝑥𝑦 + 1

3𝑦2 − 1
3𝑦,

and
𝑄2(𝑥, 𝑦) = 𝑄1(𝑥, 𝑦) + 𝐷(𝑥, 𝑦) = 𝑥2 − 2

3𝑥𝑦 − 𝑥 + 4
3𝑦2 − 4

3𝑦 + 1.

We then obtain the minimizer of the model function in the trust region {𝒙 ∶ ‖𝒙 −
𝒙(2)
opt‖2 ≤ 10}, namely 𝒅∗ = ( 5

22 , 2
11)⊤, and next compute that the next iteration (interpo-

lation) point is ( 8
11 , 15

22)⊤. Substituting 𝒅∗ into equation (3-12), we obtain the necessary
and sufficient conditions

𝑇 (𝑓(𝒚4)) = 2 + 9
10𝑇 (𝑓(𝒚1)) − 27

5 𝑇 (𝑓(𝒚2)) + 11
2 𝑇 (𝑓(𝒚3)),

𝑇 (𝑓 (𝒚new)) = −3
4 + 33

40𝑇 (𝑓(𝒚1)) + 21
20𝑇 (𝑓(𝒚2)) − 7

8𝑇 (𝑓(𝒚3)),
(3-14)

whose solution space is

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑇 (𝑓(𝒚1))
𝑇 (𝑓(𝒚2))
𝑇 (𝑓(𝒚3))
𝑇 (𝑓(𝒚4))

𝑇 (𝑓(𝒚new))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
2

−3
4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ 𝑘1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

40
0
0
36
33

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ 𝑘2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
20
0

−108
21

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ 𝑘3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
8
44
−7

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where 𝑘1, 𝑘2, 𝑘3 ∈ ℜ. We can see that it contains translation transformations (corre-
sponding to constants satisfying 𝑘2 = 2𝑘1, 𝑘3 = 5𝑘1). Note that the original function
values 𝑓(𝒚1), 𝑓 (𝒚2), 𝑓 (𝒚3), 𝑓 (𝒚4), 𝑓 (𝒚new) also satisfy (3-14).

In Figure 3-2, the top part contains the iteration/interpolation points and the origi-
nal objective function values at the first iteration. The bottom part contains the itera-
tion/interpolation points at the second iteration and the objective function values after
an optimality-preserving transformation for models.
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𝑥

𝑦

𝑓(𝒚1) = 1
𝑓(𝒚2) = 1

𝑓(𝒚3) = 1

𝑓(𝒚4) = 3

𝑓(𝒚5) = 1
2

𝑥

𝑦

𝑇 (𝑓(𝒚1))
𝑇 (𝑓(𝒚2))

𝑇 (𝑓(𝒚3))

𝑇 (𝑓(𝒚4))
𝑇 (𝑓(𝒚new))

𝑇 (𝑓(𝒚4)) = 2 + 9
10𝑇 (𝑓(𝒚1)) − 27

5 𝑇 (𝑓(𝒚2)) + 11
2 𝑇 (𝑓(𝒚3))

𝑇 (𝑓(𝒚new)) = −3
4 + 33

40𝑇 (𝑓(𝒚1)) + 21
20𝑇 (𝑓(𝒚2)) − 7

8𝑇 (𝑓(𝒚3))

Figure 3-2 Model optimality-preserving transformations in Example 3.1

3.3 Positive Monotonic Transformations and Affine Transformations

Please note that the solution 𝒅𝑘 of the trust-region subproblem corresponding to 𝑄𝑘 is
an approximation to the subproblem solution corresponding to 𝑓𝑘, because 𝑄𝑘 is a local
quadratic interpolation model function of 𝑓𝑘. Therefore, we give below the definition
of optimality-preserving transformations for objective functions.

Definition 3.10 (Optimality-preserving transformation for objective functions). If the
subproblem solution of the objective function 𝑓 under trust-region radius Δ is the same
as that of 𝑇 ∘ 𝑓 , then the transformation 𝑇 is called an optimality-preserving trans-
formation for objective functions under trust-region radius Δ. That is, given a point
𝒙opt ∈ ℜ𝑛, if we have

arg min
‖𝒅‖2≤Δ

𝑓(𝒙opt + 𝒅) = arg min
‖𝒅‖2≤Δ

(𝑇 ∘ 𝑓)(𝒙opt + 𝒅),

then the transformation 𝑇 is an optimality-preserving transformation for objective func-
tions corresponding to trust-region radius Δ.

This section will present the objective functions under some basic transformations
and the corresponding least Frobenius norm updating quadratic model functions. We
first give the definition of positive monotonic transformations.
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Definition 3.11. If a transformation 𝑇 ∶ ℜ → ℜ preserves the order of magnitudes,
i.e., for 𝜃1 > 𝜃2 we have 𝑇 (𝜃1)>𝑇 (𝜃2), and for 𝜃1 = 𝜃2 we have 𝑇 (𝜃1) = 𝑇 (𝜃2), then we
call 𝑇 a positive monotonic transformation.

We can directly obtain the following proposition.

Proposition 3.12. If the transformation 𝑇 is a positive monotonic transformation, then
𝑇 is an optimality-preserving transformation for objective functions under any trust-
region radius.

Proof. The conclusion follows directly from Definition 3.11.

A positive monotonic transformation can be any strictly increasing function, such as
a linear function with a positive coefficient (multiplicative coefficient), an exponential
function, or a power function with a positive odd exponent. Here, we give the simplest
example: an affine transformation.

Example 3.2. An affine transformation 𝑇 satisfying 𝑇 ∘𝑓 = 𝑐1𝑓 +𝑐2, where 𝑐1, 𝑐2 ∈ ℜ
and 𝑐1 > 0, is a positive monotonic transformation.

We can see that even if the objective function 𝑓 is affinely transformed to 𝑐1𝑓 + 𝑐2
at some step with 𝑐1 > 0, its least Frobenius norm updating quadratic model does not
necessarily result from applying the same transformation as for the original objective
function. In other words, as we can observe in the previous section, affine transforma-
tions are generally not optimality-preserving transformations for models. However, the
case where the objective function is affinely transformed before output is fundamental
and practically meaningful. Therefore, we will further discuss the objective function
after an affine transformation, the analytical expression of its model function, and the
constants of the fully linear interpolation model. In addition, we will present the cor-
responding numerical experiments and attempt to use this as a typical example of an
optimality-preserving transformation for objective functions to test and demonstrate the
numerical performance of our method.

We provide the following theorem to obtain the expression of the model correspond-
ing to the objective function after an affine transformation. For simplicity, in the remain-
der of this chapter we use 𝒚𝑡 to denote 𝒚new, because 𝒚new has been placed in the 𝑡-th
position of the interpolation set before obtaining the 𝑘-th model.

Theorem3.13. Assume that𝑄𝛼 is a quadratic function and that𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛

is a poised set, where 𝑛 + 1 ≤ 𝑚 < 1
2(𝑛 + 1)(𝑛 + 2). Then for 𝑐1, 𝑐2 ∈ ℜ, we have

ℳ𝒳
𝑄𝛼

(𝑐1𝑓 + 𝑐2) = (𝑐1ℳ𝒳
𝑄𝛼

(𝑓 ) + 𝑐2) + (𝑐1 − 1) (ℳ𝒳
0 (𝑄𝛼) − 𝑄𝛼) , (3-15)
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where ℳ𝒳
0 (𝑄𝛼) denotes the least Frobenius norm updating quadratic model of 𝑄𝛼

based on the zero function on 𝒳 , i.e., the least Frobenius norm quadratic model of
𝑄𝛼.

Proof. Let 𝑄𝛽 ∶= ℳ𝒳
𝑄𝛼

(𝑓 ), 𝑄̂𝛽 ∶= ℳ𝒳
𝑄𝛼

(𝑐1𝑓 + 𝑐2), and 𝑄̃ ∶= ℳ𝒳
0 (𝑄𝛼). Let 𝐷𝛽 ∶=

𝑄𝛽 − 𝑄𝛼 and 𝐷̂𝛽 ∶= 𝑄̂𝛽 − 𝑄𝛼. Then the quadratic function 𝐷𝛽 is the solution of

min
𝐷∈𝒬 ‖∇2𝐷‖

2
𝐹

s. t. 𝐷(𝒚) = 𝑓(𝒚) − 𝑄𝛼(𝒚), ∀ 𝒚 ∈ 𝒳,

and the quadratic function 𝐷̂𝛽 is the solution of

min
𝐷∈𝒬 ‖∇2𝐷‖

2
𝐹

s. t. 𝐷(𝒚) = 𝑐1𝑓(𝒚) + 𝑐2 − 𝑄𝛼(𝒚), ∀ 𝒚 ∈ 𝒳.

We denote the parameters of the quadratic functions 𝐷𝛽 and 𝐷̂𝛽 as 𝜆𝜆𝜆𝐷 ∈ ℜ𝑚,
𝑐𝐷 ∈ ℜ, 𝒈𝐷 ∈ ℜ𝑛 and 𝜆𝜆𝜆𝐷̂ ∈ ℜ𝑚, 𝑐𝐷̂ ∈ ℜ, 𝒈𝐷̂ ∈ ℜ𝑛. Moreover, (𝜆𝜆𝜆⊤

𝐷, 𝑐𝐷, 𝒈⊤
𝐷)⊤

and (𝜆𝜆𝜆⊤
𝐷̂, 𝑐𝐷̂, 𝒈⊤

𝐷̂)⊤ share the same inverse matrix 𝑽 of the KKT matrix, that is,

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝐷
𝑐𝐷
𝒈𝐷

⎞
⎟
⎟
⎟
⎠

= 𝑽

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑓(𝒚1) − 𝑄𝛼(𝒚1)
⋮

𝑓(𝒚𝑚) − 𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝐷̂
𝑐𝐷̂
𝒈𝐷̂

⎞
⎟
⎟
⎟
⎠

= 𝑽

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑐1𝑓(𝒚1) + 𝑐2 − 𝑄𝛼(𝒚1)
⋮

𝑐1𝑓(𝒚𝑚) + 𝑐2 − 𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

We can directly obtain

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝐷̂
𝑐𝐷̂
𝒈𝐷̂

⎞
⎟
⎟
⎟
⎠

= 𝑐1

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝐷
𝑐𝐷
𝒈𝐷

⎞
⎟
⎟
⎟
⎠

+ 𝑽

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑐2
⋮
𝑐2
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ 𝑐1𝑽

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑄𝛼(𝒚1)
⋮

𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− 𝑽

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑄𝛼(𝒚1)
⋮

𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Therefore,
𝐷̂𝛽 = (𝑐1𝐷𝛽 + 𝑐2) + (𝑐1 − 1) 𝑄̃,

where 𝑄̃ is the solution of the problem

min
𝑄∈𝒬 ‖∇2𝑄‖

2
𝐹

s. t. 𝑄(𝒚) = 𝑄𝛼(𝒚), ∀ 𝒚 ∈ 𝒳.

Hence,
𝑄̂𝛽 = 𝑄𝛼 + 𝐷̂𝛽

= 𝑄𝛼 + (𝑐1 (𝑄𝛽 − 𝑄𝛼) + 𝑐2) + (𝑐1 − 1) 𝑄̃
= 𝑐1𝑄𝛽 + 𝑐2 + (𝑐1 − 1) (𝑄̃ − 𝑄𝛼) .

Thus, (3-15) holds, and the theorem is proved.

We can obtain the following corollary.

Corollary 3.14. Assume 𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛 is a poised set, where 𝑛 + 1 ≤ 𝑚 <
1
2(𝑛 + 1)(𝑛 + 2). If 𝐿𝛼 is a linear function, then

ℳ𝒳
𝐿𝛼

(𝑐1𝑓 + 𝑐2) = 𝑐1ℳ𝒳
𝐿𝛼

(𝑓 ) + 𝑐2 (3-16)

holds for 𝑐1, 𝑐2 ∈ ℜ.

Proof. Since |𝒳| ≥ 𝑛+1 and𝐿𝛼 is a linear function, by interpolationwe haveℳ𝒳
0 (𝐿𝛼) =

𝐿𝛼. According to (3-15), (3-16) holds, and the corollary is proved.

The above corollary corresponds to constructing the least Frobenius norm quadratic
model, since ∇2𝐿𝛼 is the zero matrix. In general, ℳ𝒳

0 (𝑄𝛼) ≠ 𝑄𝛼. Therefore, the least
Frobenius norm updated quadratic model of the function 𝑐1𝑓 + 𝑐2 based on 𝑄𝛼 over
𝒳 may not be obtained through the same affine transformation, unless 𝑐1 = 1. The
above analysis also shows that for 𝑐2 ∈ ℜ, the translation transformation satisfying
𝑇 ∘ 𝑓 = 𝑓 + 𝑐2 is a model-optimality-preserving transformation. To further analyze the
relationship between affine transformations and model functions, we give the following
theorem.

Theorem 3.15. Suppose 𝑄𝛼 is a quadratic function, and 𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛 is a
poised set, where 𝑛 + 1 ≤ 𝑚 < 1

2(𝑛 + 1)(𝑛 + 2). Given constants 𝜈1, 𝜈2 ∈ ℜ, we have

ℳ𝒳
𝜈1𝑄𝛼+𝜈2

(𝑓 ) = 𝜈1ℳ𝒳
𝑄𝛼

(𝑓 ) + (1 − 𝜈1)ℳ𝒳
0 (𝑓 ). (3-17)

Proof. Let 𝑄𝛾 ∶= ℳ𝒳
𝜈1𝑄𝛼+𝜈2

(𝑓 ), 𝑄𝛽 ∶= ℳ𝒳
𝑄𝛼

(𝑓 ), and 𝑄𝜙 ∶= ℳ𝒳
0 (𝑓 ). Denote

𝑄𝛾 (𝒙) − 𝜈1𝑄𝛼(𝒙) − 𝜈2 = 𝑐𝛾 + (𝒙 − 𝒙0)
⊤ 𝒈𝛾 + 1

2

𝑚

∑
𝑗=1

(𝜆𝜆𝜆𝛾)𝑗 ((𝒙 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0))
2

,
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𝑄𝛽(𝒙) − 𝑄𝛼(𝒙) = 𝑐𝛽 + (𝒙 − 𝒙0)
⊤ 𝒈𝛽 + 1

2

𝑚

∑
𝑗=1

(𝜆𝜆𝜆𝛽)𝑗 ((𝒙 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0))
2

,

𝑄𝜙(𝒙) = 𝑐𝜙 + (𝒙 − 𝒙0)
⊤ 𝒈𝜙 + 1

2

𝑚

∑
𝑗=1

(𝜆𝜆𝜆𝜙)𝑗 ((𝒙 − 𝒙0)
⊤

(𝒚𝑗 − 𝒙0))
2

.

We define 𝒒1 ∈ ℜ𝑚+𝑛+1 and 𝒒2 ∈ ℜ𝑚+𝑛+1 as

𝒒1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑓(𝒚1)
⋮

𝑓(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝒒2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑄𝛼(𝒚1)
⋮

𝑄𝛼(𝒚𝑚)
0
⋮
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Using the expression of the inverse of the KKT matrix, we have

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝛾
𝑐𝛾 + 𝜈2

𝒈𝛾

⎞
⎟
⎟
⎟
⎠

= 𝑽 (𝒒1 − 𝜈1𝒒2) ,
⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝛽
𝑐𝛽
𝒈𝛽

⎞
⎟
⎟
⎟
⎠

= 𝑽 (𝒒1 − 𝒒2) ,
⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝜙
𝑐𝜙
𝒈𝜙

⎞
⎟
⎟
⎟
⎠

= 𝑽 𝒒1.

Therefore we obtain
⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝛾
𝑐𝛾 + 𝜈2

𝒈𝛾

⎞
⎟
⎟
⎟
⎠

= 𝜈1

⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝛽
𝑐𝛽
𝒈𝛽

⎞
⎟
⎟
⎟
⎠

+ (1 − 𝜈1)
⎛
⎜
⎜
⎜
⎝

𝜆𝜆𝜆𝜙
𝑐𝜙
𝒈𝜙

⎞
⎟
⎟
⎟
⎠

.

Thus,
𝑄𝛾 − 𝜈1𝑄𝛼 = 𝜈1 (𝑄𝛽 − 𝑄𝛼) + (1 − 𝜈1) 𝑄𝜙,

and hence (3-17) holds. The theorem is proved.

To analyze the model function corresponding to the affinely transformed objective
function, we derive the following corollary based on Theorem 3.15.

Corollary 3.16. Suppose 𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛 is a poised set, and 𝑄̂𝛼 is the
quadratic interpolation model of 𝑓 on 𝒳\{𝒚𝑡}, where 𝑛 + 1 ≤ 𝑚 < 1

2(𝑛 + 1)(𝑛 + 2).
Then for any 𝑐1, 𝑐2 ∈ ℜ, 𝑐1𝑄̂𝛼 + 𝑐2 is a quadratic interpolation model of 𝑐1𝑓 + 𝑐2 on
𝒳\{𝒚𝑡}. Furthermore, for any 𝑐1, 𝑐2 ∈ ℜ we have

ℳ𝒳
𝑐1𝑄̂𝛼+𝑐2

(𝑐1𝑓 + 𝑐2) − ℳ𝒳
0 (𝑐1𝑓 + 𝑐2) = 𝑐1(ℳ𝒳

𝑄̂𝛼
(𝑐1𝑓 + 𝑐2) − ℳ𝒳

0 (𝑐1𝑓 + 𝑐2)),

where ℳ𝒳
0 (𝑐1𝑓 + 𝑐2) is exactly the least Frobenius norm quadratic model of 𝑐1𝑓 + 𝑐2.

Proof. This is a direct result of Theorem 3.15 with 𝜈1 = 𝑐1, 𝜈2 = 𝑐2.

Remark 3.6. Corollary 3.16 discusses the relationship between obtaining the least Frobe-
nius norm updated quadratic model based on the original objective function 𝑓 and ob-
taining the updated model based on the transformed objective function 𝑐1𝑓 + 𝑐2.
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3.4 Fully Linear Models and Convergence Analysis

The convergence analysis in this section is for the standard provable algorithmic frame-
work, namely Algorithm 10.1 in the monograph of Conn, Scheinberg, and Vicente [20],
with the difference that we use our least Frobenius norm updated quadratic model to
minimize the transformed objective function. The only change in the provable algorith-
mic framework is the transformed output function values and the use of our model. In
other words, the function values used by the algorithm are the transformed values at the
newly added points during the iteration. Considering that our model can provide fully
linear models, we study the global convergence to first-order critical points in detail.
To explore the behavior of the interpolation models under a given affine transforma-
tion, we first present the fully linear error constants of the least Frobenius norm updated
quadratic model when the objective function is affinely transformed.

3.4.1 Fully Linear Error Constants

We provide the following assumptions and theorem regarding the interpolation error
between affinely transformed objective functions and underdetermined quadratic inter-
polation models.

Assumption 3.17. Assume 𝒳 = {𝒚1, ⋯ , 𝒚𝑚} ⊂ ℜ𝑛 is a sample/interpolation set con-
tained in ℬΔ(𝒚𝑐), and it is well-poised in the sense of linear interpolation or regression,
where 𝒚𝑐 ∈ 𝒳 and 𝑛 + 1 ≤ |𝒳| = 𝑚 < 1

2(𝑛 + 1)(𝑛 + 2).

In addition, we define 𝑳̂ = 1
Δ𝑳 = 1

Δ(𝒚1−𝒚𝑐 , ⋯ , 𝒚𝑐−1−𝒚𝑐 , 𝒚𝑐+1−𝒚𝑐 , ⋯ , 𝒚𝑚−𝒚𝑐)⊤ ∈
ℜ(𝑚−1)×𝑛 and 𝑳̂† = (𝑳̂⊤𝑳̂)−1𝑳̂⊤.

Assumption 3.18. Assume 𝑄𝛼 is a quadratic function, and the quadratic model 𝑄𝛽 ∶=
ℳ𝒳

𝑄𝛼
(𝑓 ) is a fully linear model of function 𝑓 with error constants 𝜅𝑔 and 𝜅𝑓 [20, 21],

that is,

‖∇𝑄𝛽(𝒙) − ∇𝑓(𝒙)‖2 ≤ 𝜅𝑔Δ, ∀ 𝒙 ∈ ℬΔ(𝒚𝑐),

|𝑄𝛽(𝒙) − 𝑓(𝒙)| ≤ 𝜅𝑓 Δ2, ∀ 𝒙 ∈ ℬΔ(𝒚𝑐).

Theorem 3.19. Assume Assumptions 3.17 and 3.18 hold. Then the quadratic model
function 𝑄̂𝛽 ∶= ℳ𝒳

𝑄𝛼
(𝑐1𝑓 + 𝑐2) is a fully linear model of 𝑐1𝑓 + 𝑐2, and as a fully linear

model, it has error constants for any 𝑐1, 𝑐2 ∈ ℜ:

𝜅̂𝑔 = |𝑐1|𝜅𝑔 + |𝑐1 − 1|
(

5√𝑚 − 1
2 ‖𝑳̂†‖2 (𝜇𝛼 + ‖∇2𝑄̃‖2))

,

𝜅̂𝑓 = |𝑐1|𝜅𝑓 + |𝑐1 − 1|
(

5√𝑚 − 1
2 ‖𝑳̂†‖2 + 1

2) (𝜇𝛼 + ‖∇2𝑄̃‖2) ,
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where 𝑄̃ ∶= ℳ𝒳
0 (𝑄𝛼), and 𝜇𝛼 is the Lipschitz constant of the linear function ∇𝑄𝛼. In

other words, we have

‖∇𝑄̂𝛽(𝒙) − ∇(𝑐1𝑓(𝒙) + 𝑐2)‖2 ≤ 𝜅̂𝑔Δ, ∀ 𝒙 ∈ ℬΔ(𝒚𝑐),

|𝑄̂𝛽(𝒙) − (𝑐1𝑓(𝒙) + 𝑐2)| ≤ 𝜅̂𝑓 Δ2, ∀ 𝒙 ∈ ℬΔ(𝒚𝑐).

Proof. According to Theorem 5.4 in the monograph by Conn, Scheinberg, and Vicente
[20], we have

‖∇𝑄𝛼(𝒙) − ∇𝑄̃(𝒙)‖2 ≤ 5√𝑚 − 1
2 ‖𝑳̂†‖2 (𝜇𝛼 + ‖∇2𝑄̃‖2) Δ, ∀ 𝒙 ∈ ℬΔ(𝒚𝑐),

|𝑄𝛼(𝒙) − 𝑄̃(𝒙)| ≤
(

5√𝑚 − 1
2 ‖𝑳̂†‖2 + 1

2) (𝜇𝛼 + ‖∇2𝑄̃‖2) Δ2, ∀ 𝒙 ∈ ℬΔ(𝒚𝑐).

Therefore, combining Theorem 3.13 and Assumption 3.18, the theorem follows.

3.4.2 Global Convergence to First-Order Critical Points

We now turn to the convergence of our method. We assume that the fully linear error
constants of the corresponding models have a uniform upper bound. To avoid confu-
sion, it should be noted that our convergence analysis targets general positive monotonic
transformations, not only the affine transformations discussed in Section 3.4.1. We as-
sume that the transformed functions 𝑓𝑘 and their gradients are Lipschitz continuous over
the corresponding domains.

Assumption 3.20. Assume a given initial point 𝒙int ∈ ℜ𝑛 and an upper bound on the
trust-region radius, namely Δmax. Assume that 𝑓 and all 𝑓𝑘 are continuously differen-
tiable in a region containing the set ℒenl(𝒙int), where

ℒenl(𝒙0) = ⋃
𝒙∈ℒ(𝒙int)

ℬΔmax(𝒙),

and ℒ(𝒙int) = {𝒙 ∈ ℜ𝑛 ∶ 𝑓(𝒙) ≤ 𝑓(𝒙int)}.

We assume that each transformed function 𝑓𝑘 is bounded below, as follows.

Assumption 3.21. Assume that 𝑓 and all 𝑓𝑘 are bounded below on ℒ(𝒙int), i.e., there
exists a constant 𝜅∗ such that for all 𝒙 ∈ ℒ(𝒙int), 𝑓(𝒙) ≥ 𝜅∗ and 𝑓𝑘(𝒙) ≥ 𝜅∗, ∀ 𝑘 ∈ ℕ+.

For simplicity, we assume that the Hessian matrices of the model functions (i.e.,
∇2𝑄𝑘) are uniformly bounded, as detailed below.

Assumption 3.22. There exists a constant 𝜅bhm > 0 such that for all iterations generated
by the algorithm, we have ‖∇2𝑄𝑘‖2 ≤ 𝜅bhm.

Referring to the (same) proof process of the convergence analysis of Algorithm 10.1
in Chapter 10 of the monograph by Conn, Scheinberg, and Vicente [20] (but with the
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transformed function 𝑓𝑘 in place of the original function 𝑓 ), we can directly obtain the
following convergence theorem for the algorithm minimizing the transformed objective
function.

Theorem 3.23. Assume that Assumptions 3.20, 3.21, and 3.22 hold. Assume that for
each 𝑘 ∈ ℕ+, the transformation 𝑇𝑘 is a positive monotonic transformation, and that the
fully linear error constants of the models produced by the algorithm and the Lipschitz
constants of the model gradients have uniform upper bounds. Then

lim
𝑘→∞

∇𝑓𝑘(𝒙𝑘) = 0 (3-18)

holds, where 𝑓𝑘(𝒙) = 𝑇𝑘(𝑓 (𝒙)). Moreover, we have

lim
𝑘→∞

∇𝑓(𝒙𝑘) = 0. (3-19)

Proof. The proof of (3-18) is the same as the convergence analysis of model-based
derivative-free trust-region methods in Section 10.4 of the monograph by Conn, Schein-
berg, and Vicente [20]. Note that the assumption that the fully linear error constants
of the models and the Lipschitz constants of the model gradients have uniform upper
bounds guarantees the results corresponding to Lemma 10.5 and Lemma 10.6 in the
book. In addition, given the positive monotonic transformations, we know that there
exists 𝜀 > 0 such that

lim inf
𝑘→∞

𝑑𝑓𝑘
𝑑𝑓 > 𝜀,

and thus
∇𝑓𝑘(𝒙𝑘) = 𝑑𝑓𝑘

𝑑𝑓 ∇𝑓(𝒙𝑘).

Therefore, (3-19) holds. The theorem is proved.

The transformations in Theorem 3.23 are positive monotonic; they include random
affine transformationswith positivemultiplicative coefficients, such as the random affine
transformations corresponding to (3-20).

Considering that Powell’s NEWUOA algorithm is a classical and efficient model-
based algorithm using the least Frobenius norm updating quadratic model, Section 3.5
will present the results of our improved version based onNEWUOA, namedNEWUOA-
Trans. It should be emphasized that the above convergence analysis is based on a prov-
able framework, rather than specifically for NEWUOA or NEWUOA-Trans. This is be-
cause the complex structure of NEWUOA’s code makes its convergence analysis quite
difficult, even in the case of minimizing untransformed objective functions, which re-
mains an open problem.

NEWUOA-Trans shares the same framework as NEWUOA, but it updates the corre-
spondingmodel through (3-7), which can be understood as a direct extension of Powell’s
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least Frobenius norm updating. In both NEWUOA and NEWUOA-Trans, the model
improvement step first attempts to replace interpolation points that are too far from the
current 𝒙opt and other interpolation points (for example, replacing points outside the
trust region centered at 𝒙opt with radius 2Δ𝑘). When all points in the interpolation set
are sufficiently close to each other, NEWUOA-Trans checks the well-posedness of the
interpolation set. The model improvement step then finds new interpolation points by
maximizing the absolute value related to the corresponding Lagrange polynomial or by
updating the denominator of the KKTmatrix inverse formula. This process is unaffected
by the transformation. If the interpolation set is well-posed, then neither NEWUOA nor
NEWUOA-Trans requires further model improvement. In the case where the interpo-
lation set is not well-posed, one point in the set is replaced at each step. Referring to
Theorem 6.3 in the monograph by Conn, Scheinberg, and Vicente [20], this guarantees
the acquisition of a well-posed interpolation set within the interpolation region, and
thus a fully linear model. In fact, the model improvement step ensures that a fully linear
model can be produced within a finite number of iterations. Therefore, the interpola-
tion updates of NEWUOA and NEWUOA-Trans guarantee that a fully linear model is
constructed within a finite and uniformly bounded number of steps.

3.5 Numerical Results

The previous analysis shows that if 𝑐1 ≠ 1, then the affine transformation 𝑇 satisfying
𝑇 ∘ 𝑓 = 𝑐1𝑓 + 𝑐2 with 𝑐1 > 0 is generally not a model-optimality-preserving trans-
formation. However, affine transformations are extremely fundamental and important,
with practical application value. For example, affine transformations correspond to ad-
ditive and multiplicative noise mechanisms with different privacy protection schemes
in encrypted black-box optimization. In fact, in the previous section, we theoretically
analyzed the analytical expression and interpolation error of the least Frobenius norm
updating quadratic model for affine-transformed objective functions. In this section, we
further observe the performance of our method through numerical experiments.

As mentioned earlier, to solve derivative-free optimization problems with trans-
formed objective functions, we implemented a derivative-free algorithm based on Pow-
ell’s NEWUOA algorithm [94], and named it NEWUOA-Trans4. The underdetermined
models used in NEWUOA-Trans are updated via (3-7). This part presents numerical
results for solving certain derivative-free optimization problems with transformed ob-
jective functions using NEWUOA-Trans. The numerical results illustrate the main char-
acteristics and advantages of NEWUOA-Trans. Overall, NEWUOA-Trans is a robust
and efficient algorithm that can be used to minimize transformed objective functions.
The code modifications of NEWUOA-Trans mainly occur in the parts updating the Hes-

4“-Trans” indicates that it is designed to solve problems with transformed objective functions.
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sian and gradient of the model (handling such complex code is not easy). Note that the
other parts of NEWUOA-Trans refer to the corresponding parts of NEWUOA.

3.5.1 Algorithm Comparison and Related Transformations

In the numerical experiments, we used the algorithms listed in Table 3-2 to solve
derivative-free optimization problems with transformed objective functions. The objec-
tive functions of all problems were transformed as shown in (3-20). In addition, we also
tested NEWUOA-N. Note that NEWUOA-N solves problems without noise, i.e., the
objective functions are untransformed. Here “-N” indicates no noise, and NEWUOA-
N can be regarded as a baseline to some extent. Moreover, the comparison between
NEWUOA-Trans and NEWUOA-N can indicate whether NEWUOA-Trans can reduce
or overcome the impact of transformations on the objective functions. See Table 3-2
for details. In NEWUOA-Trans, NEWUOA-N, and NEWUOA, we set ̂𝜌beg = 10−1,

̂𝜌end = 10−8, 𝑚 = 2𝑛 + 1 (note that Powell’s original notation was 𝜌beg and 𝜌end). More
details of the NEWUOA framework can be found in Figure 1 of Powell’s paper [94].

Table 3-2 Compared algorithms

Algorithm Model Problem

NEWUOA-Trans Our model Transformed objective
NEWUOA Powell’s model [94] Transformed objective
NEWUOA-N Powell’s model Original objective (no transformation)

In the numerical experiments of Section 3.5.2 and Section 3.5.3, at the 𝑘-th step,
the objective function value 𝑓(𝒙) at any 𝒙 in the 𝑘-th batch of sampling points will be
transformed as

𝑓𝑘(𝒙) = (𝛾𝑘 + 1)𝑓(𝒙) + 𝐶𝜂𝑘, (3-20)

where 𝜂𝑘 ∼ Lap(𝑏𝑘), 𝑏𝑘 > 0, and 𝛾𝑘 ∼ U(−𝑢𝑘, 𝑢𝑘), 0 < 𝑢𝑘 < 1. The probability density
function of Lap(𝑏𝑘) is 𝑝(𝑥) = 1

2𝑏𝑘
𝑒− |𝑥|

𝑏𝑘 . Moreover, U denotes the uniform distribution,
with the probability density function

𝑝(𝑥) =
⎧⎪
⎨
⎪⎩

1
2𝑢𝑘

, if 𝑥 ∈ [−𝑢𝑘, 𝑢𝑘],

0, otherwise.

3.5.2 Transformation Attack on the NEWUOA Algorithm: A Simple Example

The following simple example shows that transformations in the objective function (even
affine transformations) can cause the unmodified NEWUOA to fail during the solu-
tion process. In other words, transformations act as an attack or disturbance on the
NEWUOA algorithm.
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Example 3.3. In the numerical experiments corresponding to Table 3-3, the objective
function is

𝑓(𝒚) =
10

∑
𝑖=1

𝑦4
𝑖 +

10

∑
𝑖=1

𝑦2
𝑖 ,

where 𝒚 = (𝑦1, ⋯ , 𝑦𝑛)⊤. In this example, the problem dimension 𝑛 is 10. In addition,
the initial point is (10, ⋯ , 10)⊤, and in (3-20) the constant 𝐶 = 1. The analytic solution
of the numerical experiment is (0, ⋯ , 0)⊤, with the corresponding least function value 0.
In Table 3-3, the symbols✓ and× indicate whether the algorithm successfully solved the
problem. The symbol ✓ means that the numerical optimal function value 𝑓opt obtained
by the algorithm is less than 10−3, while the symbol × means that this accuracy was not
achieved. The symbol NF denotes the number of function value evaluations obtained
when the iteration terminated. Moreover, NEWUOA-N can find a point with a function
value less than 10−16 using only 990 function evaluations.

Table 3-3 Numerical results for Example 3.3

Transform para. 𝜂𝑘 ∼ Lap( 1
𝑘), 𝛾𝑘 = 0 𝜂𝑘 ∼ Lap(100

𝑘 ), 𝛾𝑘 = 0

Algorithm NF 𝑓opt NF 𝑓opt

NEWUOA-Trans 1033 1.5626 × 10−13 ✓ 1046 7.7485 × 10−13 ✓
NEWUOA 613 0.1375 × 348 7.2318 ×
Transform para. 𝜂𝑘 ∼ Lap(10

𝑘 ), 𝛾𝑘 = 0 𝜂𝑘 = 0, 𝛾𝑘 ∼ U(− 1
𝑘 , 1

𝑘)

Algorithm NF 𝑓opt NF 𝑓opt

NEWUOA-Trans 847 2.6014 × 10−13 ✓ 1055 3.1489 × 10−13 ✓
NEWUOA 542 1.5818 × 408 0.7345 ×
Transform para. 𝜂𝑘 ∼ Lap(100

𝑘 ), 𝛾𝑘 ∼ U(− 1
𝑘 , 1

𝑘) 𝜂𝑘 ∼ Lap(100
𝑘 ), 𝛾𝑘 ∼ U(− 𝑘

104 , 𝑘
104 )

Algorithm NF 𝑓opt NF 𝑓opt

NEWUOA-Trans 1056 4.1928 × 10−13 ✓ 948 1.1924 × 10−13 ✓
NEWUOA 432 6.5330 × 409 4.0762 ×

From Table 3-3, it can be seen that NEWUOA almost never succeeds in solving
problems with simply transformed objective functions. In other words, it performs
poorly when solving derivative-free optimization problems with transformed objec-
tive functions, which is precisely due to the influence of transformations/noise. More-
over, the results of NEWUOA-N and NEWUOA-Trans are close. Considering that
NEWUOA-N serves as a baseline, this shows that NEWUOA-Trans performs satisfac-
torily when solving optimization problems with transformed objective functions.
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3.5.3 Algorithm Performance

We use Performance Profiles to compare different algorithms. The test problems and
numerical results shown in Figures 3-3 and 3-4 are listed in Table 4-4. Their dimen-
sions range from 2 to 100 and are drawn from classical and commonly used sets of
unconstrained optimization test functions [92, 177, 178, 180, 181, 183–186]. For each
algorithm, the maximum number of function evaluations is set to 10000.
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Figure 3-3 The comparison of algorithms solving the test problems: Performance Profile

As shown in Example 3.3, the unmodified NEWUOA is not suitable for solving
DFOTO problems. Here we compare NEWUOA-Trans and NEWUOA-N. The trans-
formation parameters are set as 𝐶 = 100, 𝜂𝑘 ∼ Lap(100

𝑘 ), 𝛾𝑘 ∼ U(− 1
𝑘 , 1

𝑘), and both algo-
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Table 3-4 Test problems for Figure 3-3

ARGLINA ARGLINA4 ARGLINB ARGLINC ARGTRIG
ARWHEAD BDQRTIC BDQRTICP BDALUE BROWNAL
BROYDN3D BROYDN7D BRYBND CHAINWOO CHEBQUAD
CHNROSNBZ CHPOWELLB CHPOWELLS CHROSEN COSINECUBE
CURLY10 CURLY20 CURLY30 DIXMAANE DIXMAANF
DIXMAANG DIXMAANH DIXMAANI DIXMAANJ DIXMAANK
DIXMAANL DIXMAANM DIXMAANN DIXMAANO DIXMAANP
DQRTIC EDENSCH ENGVAL1 ERRINROS EXPSUM
EXTROSNB EXTTET FIROSE FLETCBV2 FLETCBV3
FLETCHCR FMINSRF2 FREUROTH GENBROWN GENHUMPS
GENROSE INDEF INTEGREQ LIARWHD LILIFUN3
LILIFUN4 MOREBV MOREBVL NCB20 NCB20B
NONCVXU2 NONCVXUN NONDIA NONDQUAR PENALTY1
PENALTY2 PENALTY3 PENALTY3P POWELLSG POWER
ROSENBROCK SBRYBND SBRYBNDL SCHMVETT SCOSINE
SCOSINEL SEROSE SINQUAD SPARSINE SPARSQUR
SPHRPTS SPMSRTLS SROSENBR STMOD TOINTGSS
TOINTTRIG TQUARTIC TRIGSABS TRIGSSQS TRIROSE1
TRIROSE2 VARDIM WOODS - -
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Figure 3-4 The comparison of algorithms solving the test problems: Sensitivity Profile
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rithms share the same initial point. In Figures 3-3a to 3-3f, it can be observed that when
the accuracy 𝜏 = 10−1, ⋯ , 10−6, the performance of NEWUOA-Trans and NEWUOA-
N is very close. NEWUOA-Trans performs well on problems with transformed objec-
tive functions. The comparisons in Figures 3-3a to 3-3f demonstrate that NEWUOA-
Trans can successfully solve most derivative-free black-box optimization problems with
transformed objective functions. The slight differences between NEWUOA-Trans and
NEWUOA-N (the benchmark solving noiseless problems) come from the impact of ran-
dom noise on the models.

In the numerical results reported in Figure 3-4, the objective functions are selected
from the test problems listed in Table 4-4. In addition, 𝐶 = 100 and 𝜏 = 10−4. A higher
value of 𝜎𝑎(𝛼) indicates stronger stability of the algorithm in the Sensitivity Profile [46].
Figure 3-4 shows that the performance of NEWUOA-Trans is close to NEWUOA-N,
which means that the rounding errors of NEWUOA-Trans are comparable to those of
our benchmark NEWUOA-N. In fact, the Sensitivity Profile is another important crite-
rion we use to evaluate algorithm stability. We denote by 𝑷𝑖 ∈ ℜ𝑛×𝑛, 𝑖 = 1, 2, ⋯ , 𝑀 ,
random permutation matrices. In the experiment, 𝑀 = 100, and an example of a ran-
dom permutation matrix is 𝑷1 = (𝒆1, 𝒆2, 𝒆4, 𝒆3, 𝒆8, 𝒆5, 𝒆9, 𝒆10, 𝒆6, 𝒆7)

⊤. Furthermore,
we define

NF = (NF1, ⋯ ,NF𝑀) ,

where NF𝑖 denotes the number of function evaluations required to solve the prob-
lem min

𝒙∈ℜ𝑛
𝑓(𝑷𝑖𝒙). We define mean(NF) = 1

𝑀 ∑𝑀
𝑖=1 NF𝑖, and the standard deviation

std(NF) = √
1

𝑀 ∑𝑀
𝑖=1(NF𝑖 − mean(NF))2. In the Performance Profile, we use std(NF)

to replace 𝑁𝑎,𝑝, corresponding to algorithm 𝑎 solving problem 𝑝, to ultimately obtain
𝜎𝑎(𝛼) and thus construct the Sensitivity Profile.

We can see that the curves of NEWUOA-Trans and NEWUOA-N are close to each
other, which shows that the interference from the transformations hardly affects NEWUOA-
Trans.

Our numerical experiments demonstrate that NEWUOA-Trans can efficiently and
stably solve most derivative-free optimization problems with such transformed objec-
tive functions. The performance of NEWUOA-Trans is close to that of NEWUOA-N,
indicating that NEWUOA-Trans successfully handles optimization problemswith trans-
formed objective functions and overcomes the interference introduced by the transfor-
mations.

3.5.4 Experiments on a Real-World Problem

We apply our method to the engineering optimal design of space traveling-wave tubes
(TWTs) with privacy protection [206]. A traveling-wave tube is a critical vacuum elec-
tronic device [207], which affects signal quality and strength and is widely used in com-
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munication, transportation, navigation, meteorological measurement, forecasting, and
other fields.

Considering the special working environment of space TWTs, efficiency is a key fac-
tor. In the design of space TWTs, design parameters are crucial to efficiency, which is
precisely what we aim to maximize. However, the analytical expression of efficiency is
unknown, and the relationship between the parameters and the objective function is dif-
ficult to analyze. In addition, TWT data are difficult to obtain. Most of the data regard-
ing efficiency performance must come from experiments or simulations, which involve
very high cost or time consumption; furthermore, in practice, some data are encrypted.
Therefore, solving such an expensive optimization problem is a typical derivative-free
optimization problem. As an important industrial product related to security, copy-
right, and commercial interests, the true values of the efficiency of certain special types
of TWTs are encrypted during the optimization process (especially for the public and
for third-party designers of optimization algorithms). Hence, optimizing the efficiency
of these special types of TWTs is a derivative-free black-box optimization problem with
privacy protection, belonging to DFOTO problems with transformations.

We conducted the following numerical experiment, with test data for the space TWT
provided by the Beijing Vacuum Electronics Research Institute. The goal of this numer-
ical experiment is to find the optimal design parameters of a space TWT with privacy
protection, such that the efficiency is maximized. This is formulated as an unconstrained
derivative-free optimization problem with privacy protection5:

max
𝒫input

Efficiency (𝒫input) ,

where 𝒫input is a 10-dimensional vector representing the design parameters of the space
TWT. To protect the true values of efficiency (which are directly related to the objective
function), the designer of the TWT applies a random affine transformation at each eval-
uation step to encrypt the true function values during the probing process. The basic
probing procedure follows Assumption 3.1 and Table 3-1. We apply NEWUOA-Trans
to solve this problem, choosing the initial input 10−1 × (2, ⋯ , 2)⊤ as the starting point,
with ̂𝜌beg = 10−1 and ̂𝜌end = 10−4. NEWUOA-Trans terminated after 226 iterations.
The iteration process can be seen in Table 3-5, which shows the Euclidean distance
between the best iteration point 𝒙𝑘 at the 𝑘-th step and the final solution 𝒙∗.

In order to verify our results, we can use large-scale simulation software CST for
simulation design. We found that, in the working frequency band, the efficiency corre-
sponding to the final parameters we obtained shows a significant improvement compared
with the best settings based on expert knowledge and experience, as shown in Table 3-6.

5For simplicity, some constraints have been adjusted and removed in advance.
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Table 3-5 The distance between the best iteration point at the 𝑘-th step and the final solution:
‖𝒙𝑘 − 𝒙∗‖2

Iter. 10 20 30 40 50 60 70 80
Dist. 84.4577 42.6845 19.0530 13.7870 7.7990 4.7825 0.9851 0.8116

Iter. 90 100 110 120 130 140 150 160
Dist. 0.7110 0.5525 0.5106 0.4705 0.4034 0.3035 0.1318 0.1102

Iter. 170 180 190 200 210 220
Dist. 0.0800 0.0560 0.0370 0.0102 0.0025 0

Table 3-6 Efficiency increment

Frequency point (GHz) 94 97 100

Efficiency increment (‰) 53 62 66

According to the corresponding industry evaluation mechanism, the parameters ob-
tained by solving the transformed derivative-free optimization problem usingNEWUOA-
Trans achieve the maximum efficiency of this special space TWT design, and the re-
sulting maximum efficiency is satisfactory within the industry. This demonstrates the
strong practicality of our method. The industry also potentially favors the privacy pro-
tection feature of our method, mainly because in some cases the data provider can (and
only needs to) output the transformed function values. The above preliminary applica-
tion also inspires us to apply our method in broader fields.

3.6 Conclusion

Before concluding this chapter, we propose an extended transformed optimization prob-
lem, which is a new and challenging mathematical programming problem.
Open problem 3.24 (Derivative-free methods for minimizing “moving-target” type ob-
jective functions). Attempt to design practical numerical optimization algorithms for
the unconstrained problem (3-1), where 𝑓(𝒙, 𝑡) is the actual output value of the black-
box function 𝑓 at 𝒙 ∈ ℜ𝑛 and given 𝑡 ∈ ℜ, where 𝑡 strictly depends on the probing
order of the current point 𝒙, or equivalently, 𝑡 can be viewed as time. In other words, the
set of probed function values will take the form {𝑓(𝒙1, 𝑡1), 𝑓 (𝒙2, 𝑡2), ⋯ , 𝑓(𝒙𝑘, 𝑡𝑘), ⋯},
where 𝑡𝑘 may correspond to discrete probing times.

This chapter discussed derivative-free optimization with transformed objective
functions. We proposed a corresponding probing scheme. For strictly convex mod-
els with a unique minimizer in the trust region, we proved that, besides translation
transformations, there exist other model-optimality-preserving transformations. This
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chapter proposed sufficient and necessary conditions for transformed function values
to preserve model optimality. We obtained the corresponding quadratic models for
affine-transformed objective functions and proved that some positive monotone trans-
formations (even affine transformations with positive multiplicative coefficients) are not
model-optimality-preserving transformations. We also provided an interpolation error
analysis for the corresponding model functions of given affine-transformed objective
functions. Convergence analysis for first-order critical points was also provided. The
results for test problems and real-world applications numerically demonstrated the ad-
vantages of our method.

This chapter represents an initial attempt in this direction, and much remains to be
studied regarding derivative-free optimization with transformations. In the future, we
will investigate and explore more applications, including details of constructing least
Frobenius norm updated quadratic models for derivative-free optimization with trans-
formed objective functions in more engineering applications (e.g., encrypted black-box
optimization with noise-adding mechanisms). As discussed in Section 3.4, fully lin-
ear error constants may vary at each iteration and lack a uniform bound; in such cases,
if the multiplicative coefficient 𝑐1 is unbounded, they may grow unboundedly during
iterations. Therefore, analyzing convergence for solving transformed problems under
weaker assumptions than those used in Section 3.4 remains an open and challenging
problem. Additionally, the open Problem 3.24 on minimizing “moving-target” type ob-
jective functions is also interesting and valuable.
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Chapter 4 Subspace Methods and Parallel Methods

This chapter focuses on unconstrained derivative-free optimization and proposes a new
subspace derivative-free optimization algorithm that can be used to solve large-scale
problems. In addition, we also propose a new parallel method that combines trust-region
methods and line-search methods.

4.1 Derivative-free Subspace Trust-region Method 2D-MoSub

To solve large-scale unconstrained derivative-free optimization problems, this section
introduces a new derivative-free optimization method that effectively and iteratively
searches for the optimal solution using subspace techniques and low-dimensional quadratic
interpolation models.

Zhang [46] introduced the application of subspace techniques in derivative-free op-
timization and proposed a framework for a class of derivative-free subspace algorithms.
This section introduces the framework and computational details of our newly proposed
derivative-free optimizationmethod (2D-MoSub), as well as coordinate transformations
related to subspaces. We also discuss the poisedness and quality of interpolation sets,
analyze some properties of 2D-MoSub, including approximation error with projection
properties and convergence, and present numerical results for solving large-scale prob-
lems.

4.1.1 2D-MoSub Algorithm

In this section, we introduce our proposed 2D-MoSub algorithm. Its framework is
shown in Algorithm 6.

Algorithm 6 2D-MoSub Algorithm
Input: 𝒙int ∈ ℜ𝑛, Δ1, Δlow, 𝛾1, 𝛾2, 𝜂, 𝜂0, 𝒅(1) ∈ ℜ𝑛, let 𝑘 = 1.
Step 0. (Initialization)

Obtain 𝒚𝑎, 𝒚𝑏, 𝒚𝑐 and 𝒅(1)
1 . Construct the initial 1D quadratic model 𝑄sub

1 in the
1D space 𝒙1 + span{𝒅(1)

1 }.
Step 1. (Construct interpolation set)

Obtain a unit direction𝒅(𝑘)
2 ∈ ℜ𝑛 such that ⟨𝒅(𝑘)

1 , 𝒅(𝑘)
2 ⟩ = 0. Obtain 𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 .
Step 2. (Construct quadratic interpolation model)

Construct the 2D quadratic model 𝑄𝑘 in the 2D space 𝒙𝑘 + span{𝒅(𝑘)
1 , 𝒅(𝑘)

2 }.
Step 3. (Trust-region trial step)

Solve the trust-region subproblem of 𝑄𝑘 and optionally solve the trust-region
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subproblem of the modified model 𝑄mod
𝑘 , then obtain 𝒙+

𝑘 . Compute

𝜌𝑘 =
𝑓(𝒙+

𝑘 ) − 𝑓(𝒙𝑘)
𝑄𝑘(𝒙+

𝑘 ) − 𝑄𝑘(𝒙𝑘)
. (4-1)

Update and obtain 𝒙𝑘+1 and 𝒅(𝑘+1)
1 . Go to Step 4.

Step 4. (Update)
If Δ𝑘 < Δlow, then terminate. Otherwise, update Δ𝑘+1, let

𝒅(𝑘+1)
1 =

𝒙𝑘+1 − 𝒙𝑘

‖𝒙𝑘+1 − 𝒙𝑘‖2
,

and construct 𝑄sub
𝑘+1 in the 1D space 𝒙𝑘+1 + span{𝒅(𝑘+1)

1 } as the function 𝑄𝑘. Let
𝑘 = 𝑘 + 1 and return to Step 1.

We will introduce the details of each part of Algorithm 6 below. Before further
discussion, we provide the following remark and definition.

Remark 4.1. In our method, when we discuss the corresponding 1D interpolation model
and 2D interpolation model, points in ℜ𝑛 are correspondingly viewed as points in a 1D
subspace or a 2D subspace.

To meet computational needs, given 𝒂 ∈ ℜ𝑛 and 𝒃 ∈ ℜ𝑛, we define the following
transformations to represent coordinate mappings from the 2D subspace 𝒮 (𝑘)

𝒂,𝒃 = 𝒙𝑘 +
span{𝒂, 𝒃} and the 1D subspace ̂𝒮 (𝑘)

𝒂 = 𝒙𝑘 + span{𝒂} to ℜ2 or ℜ, respectively.

Definition 4.1. Let 𝒯 (𝑘)
𝒂,𝒃 be the transformation from 𝒮 (𝑘)

𝒂,𝒃 to ℜ2, defined as

𝒯 (𝑘)
𝒂,𝒃 ∶ 𝒚 ↦ (⟨𝒚 − 𝒙𝑘, 𝒂⟩ , ⟨𝒚 − 𝒙𝑘, 𝒃⟩)

⊤ .

Let ̂𝒯 (𝑘)
𝒂 be the transformation from ̂𝒮 (𝑘)

𝒂 to ℜ, defined as

̂𝒯 (𝑘)
𝒂 ∶ 𝒚 ↦ ⟨𝒚 − 𝒙𝑘, 𝒂⟩ .

The algorithm 2D-MoSub begins with the initialization of input parameters and vec-
tors. It first constructs the initial one-dimensional quadratic interpolation model 𝑄sub

1 .
To start the algorithm, we initialize using the initial point 𝒙0 and set various parame-
ters: the trust-region parameters Δ1 and Δlow, 𝛾1 and 𝛾2, as well as the thresholds for
successful steps 𝜂 and 𝜂0. The direction 𝒅(1) can be any vector in ℜ𝑛. For example,
we may choose 𝒅(1) = (1, 0, ⋯ , 0)⊤. Based on extensive numerical experiments, we
observe that the choice of 𝒅(1) does not fundamentally affect the overall performance of
the algorithm.

Algorithm 7 Step 0. Initialization
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1: Input: Obtain the initial point 𝒙int, trust-region parameters Δ1, Δlow, 𝛾1, 𝛾2, as
well as 𝜂 and 𝜂0. Choose a 𝒅(1) ∈ ℜ𝑛.

2: Obtain three points: 𝒚𝑎 = 𝒙int, 𝒚𝑏 = 𝒙int + Δ1𝒅(1), and 𝒚𝑐 based on the relative
values of 𝑓(𝒚𝑎) and 𝑓(𝒚𝑏), namely

𝒚𝑐 =
{

𝒚𝑎 + 2Δ1𝒅(1), if 𝑓(𝒚𝑏) ≤ 𝑓(𝒚𝑎),
𝒚𝑎 − Δ1𝒅(1), otherwise.

(4-2)

3: Let 𝒙1 be the point among 𝒚𝑎, 𝒚𝑏, and 𝒚𝑐 with the smallest function value, i.e.,

𝒙1 = arg min
𝒚∈{𝒚𝑎,𝒚𝑏,𝒚𝑐}

𝑓(𝒚).

4: Let 𝒚(1)
max,1 be the point among 𝒚𝑎, 𝒚𝑏, and 𝒚𝑐 with the largest function value, i.e.,

𝒚(1)
max,1 = arg max

𝒚∈{𝒚𝑎,𝒚𝑏,𝒚𝑐}
𝑓(𝒚).

5: Define 𝒅(1)
1 as the normalized vector from 𝒚(1)

max,1 to 𝒙1, i.e.,

𝒅(1)
1 =

𝒙1 − 𝒚(1)
max,1

‖𝒙1 − 𝒚(1)
max,1‖2

.

6: Construct the initial one-dimensional quadratic interpolation model 𝑄sub
1 in the 1D

space 𝒙1 + span{𝒅(1)
1 }, namely

𝑄sub
1 (𝛼) = 𝑓(𝒙1) + 𝑎(1)𝛼 + 𝑏(1)𝛼2, (4-3)

where 𝑎(1), 𝑏(1) ∈ ℜ are determined by the interpolation conditions

𝑄sub
1 ( ̂𝒯 (1)

𝒅(1)
1

(𝒚)) = 𝑓(𝒚), ∀ 𝒚 ∈ {𝒚𝑎, 𝒚𝑏, 𝒚𝑐} . (4-4)

Once the above initialization of parameters is complete, 2D-MoSub obtains three
points: 𝒚𝑎 = 𝒙int, 𝒚𝑏 = 𝒙int + Δ1𝒅(1), and 𝒚𝑐 determined by (4-2) according to the
relative size of 𝑓(𝒚𝑎) and 𝑓(𝒚𝑏). With these points, 2D-MoSub sets 𝒙1 as the one among
𝒚𝑎, 𝒚𝑏, and 𝒚𝑐 with the smallest function value. At the same time, 2D-MoSub sets 𝒚(1)

max,1
as the one among the same set of points with the largest function value. Note that if they
have identical function values, we adopt a tie-breaking rule to ensure 𝒙1 ≠ 𝒚(1)

max,1. We
assume in this section that such selection operations can always be performed correctly,
which does not affect the overall concept and effectiveness of the algorithm. Using 𝒙1
and 𝒚(1)

max,1, we define 𝒅(1)
1 as the normalized vector pointing from 𝒙1 to 𝒚(1)

max,1. Finally,
2D-MoSub constructs the initial one-dimensional quadratic interpolation model 𝑄sub

1
on the space 𝒙1 + span{𝒅(1)

1 } according to (4-3) and interpolation condition (4-4). The
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Algorithm 8 Step 1. Constructing the Interpolation Set
1: Input: 𝒙𝑘, 𝒅(𝑘)

1 , Δ𝑘
2: Select a unit vector 𝒅(𝑘)

2 such that ⟨𝒅(𝑘)
1 , 𝒅(𝑘)

2 ⟩ = 0.
3: Define 𝒚(𝑘)

1 as
𝒚(𝑘)

1 = 𝒙𝑘 + Δ𝑘𝒅(𝑘)
2 . (4-5)

4: Determine 𝒚(𝑘)
2 based on the relative size of 𝑓(𝒚(𝑘)

1 ) and 𝑓(𝒙𝑘):

𝒚(𝑘)
2 =

{
𝒙𝑘 + 2Δ𝑘𝒅(𝑘)

2 , if 𝑓(𝒚(𝑘)
1 ) ≤ 𝑓(𝒙𝑘),

𝒙𝑘 − Δ𝑘𝒅(𝑘)
2 , otherwise.

(4-6)

5: Let 𝒚(𝑘)
min,2 be the one with the smaller function value between 𝒚(𝑘)

1 and 𝒚(𝑘)
2 , i.e.,

𝒚(𝑘)
min,2 = arg min

𝒚∈{𝒚(𝑘)
1 ,𝒚(𝑘)

2 }
𝑓(𝒚).

6: Define 𝒚(𝑘)
3 as

𝒚(𝑘)
3 = 𝒚(𝑘)

min,2 + Δ𝑘𝒅(𝑘)
1 . (4-7)

𝒙0𝒚(1)
max,1 𝒙1

𝒚𝑎𝒚𝑏 𝒚𝑐

𝒚(1)
1

𝒚(1)
2

𝒚(1)
3

𝒅(1)
1

𝒅(1)
2

Figure 4-1 The initial case and the subspace 𝒙1 + span{𝒅(1)
1 , 𝒅(1)

2 }
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details are provided in the pseudocode of the initialization step, which is Step 0 of 2D-
MoSub.

Based on the interpolation set in the 2D subspace 𝒙𝑘 + span{𝒅(𝑘)
1 , 𝒅(𝑘)

2 } and the 1D
quadratic interpolation model 𝑄sub

𝑘 , 2D-MoSub constructs a 2D quadratic interpolation
model 𝑄𝑘. The model 𝑄𝑘 approximates the objective function within the 2D subspace
spanned by the selected directions. In addition, if the trial point obtained by minimizing
the model 𝑄𝑘 within the trust region does not achieve a sufficiently small function value,
our method constructs a modified model 𝑄mod

𝑘 based on the already probed points. We
now provide the details of constructing the model separately.

After discussing the initial 1D model 𝑄sub
1 based on the interpolation condition (4-

4), we now introduce how to obtain the 𝑘-th model 𝑄𝑘 from 𝑄sub
𝑘 .

We construct the 2D quadratic interpolation model 𝑄𝑘 in the 2D subspace 𝒙𝑘 +
span{𝒅(𝑘)

1 , 𝒅(𝑘)
2 }, namely

𝑄𝑘(𝛼, 𝛽) = 𝑓(𝒙𝑘) + 𝑎(𝑘)𝛼 + 𝑏(𝑘)𝛼2 + 𝑐(𝑘)𝛽 + 𝑑(𝑘)𝛽2 + 𝑒(𝑘)𝛼𝛽, (4-8)

where the coefficients 𝑎(𝑘) and 𝑏(𝑘) are inherited directly from𝑄sub
𝑘 , while the coefficients

𝑐(𝑘), 𝑑(𝑘), and 𝑒(𝑘) are determined by the interpolation condition

𝑄𝑘(𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ {𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 } . (4-9)

The details are provided in the algorithmic pseudocode for the quadratic interpolation
model construction step, denoted as Step 2 of 2D-MoSub.

Algorithm 9 Step 2. Constructing the Quadratic Interpolation Model
1: In the 2D space 𝒙𝑘 + span{𝒅(𝑘)

1 , 𝒅(𝑘)
2 }, construct the 2D quadratic interpolation

model 𝑄𝑘 (as in (4-8)), where 𝑐(𝑘), 𝑑(𝑘), and 𝑒(𝑘) are determined by the interpolation
condition (4-9).

We consider the above way of obtaining 𝑄𝑘 to be reasonable and reliable, because
when 𝒙𝑘 is a successful trust-region trial step, the vector 𝒙𝑘 −𝒙𝑘−1 numerically provides
a sufficiently good direction and the corresponding 1D subspace. Moreover, in the pre-
vious 2D subspace, the model 𝑄+

𝑘−1 along this 1D subspace is also a sufficiently good
approximation. In most cases, this 1D subspace is the intersection between the (𝑘 − 1)-
th 2D subspace and the 𝑘-th 2D subspace. In other words, 𝑄𝑘 maintains optimality
consistency with the previous good model within the corresponding 1D subspace.

We now introduce how our algorithm obtains the (𝑘+1)-th model function 𝑄sub
𝑘+1 on

the 1D subspace based on the 𝑘-th model function 𝑄𝑘. At Step 𝑘, we already have the
model function 𝑄𝑘 with determined coefficients. However, after obtaining the iterate
𝒙𝑘+1 and its function value 𝑓(𝒙𝑘+1), we usually have

𝑄𝑘(𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒙𝑘+1)) ≠ 𝑓(𝒙𝑘+1),
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which indicates that 𝑄𝑘 is not a sufficiently good interpolation of the function 𝑓 after
incorporating information at 𝒙𝑘+1. Therefore, before constructing the model 𝑄sub

𝑘+1, we
tend to update 𝑄𝑘 to the following 𝑄+

𝑘 , namely

𝑄+
𝑘 (𝛼, 𝛽) = 𝑓(𝒙𝑘+1) + ̄𝑎(𝑘)𝛼 + ̄𝑏(𝑘)𝛼2 + ̄𝑐(𝑘)𝛽 + ̄𝑑(𝑘)𝛽2 + ̄𝑒(𝑘)𝛼𝛽, (4-10)

which satisfies the interpolation condition

𝑄+
𝑘 (𝒯 (𝑘+1)

𝒅(𝑘+1)
1 ,𝒅(𝑘+1)

∗
(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ {𝒙𝑘−1, 𝒙𝑘, 𝒙𝑘+1, 𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 } ,

where 𝒅(𝑘+1)
∗ ∈ span{𝒅(𝑘)

1 , 𝒅(𝑘)
2 } satisfies ⟨𝒅(𝑘+1)

∗ , 𝒅(𝑘+1)
1 ⟩ = 0. We provide more details

on constructing the quadratic interpolation model 𝑄+
𝑘 below.

Note that in some cases, the set of interpolation points in (4-10) is not well-posed.
Therefore, 2D-MoSub checks whether the corresponding coefficient matrix of each in-
terpolation system is invertible. If the current interpolation set is not well-posed in this
sense, 2D-MoSub prepares different interpolation points as alternatives. It tests the in-
vertibility of the coefficient matrices associated with these sets and uses a well-posed set
to obtain the quadratic model 𝑄+

𝑘 by solving the interpolation equations. The alternative
set of interpolation points is composed of six points selected from

𝒴+
𝑘 = {𝒙𝑘−1, 𝒙𝑘, 𝒙𝑘+1, 𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 , 𝒚(𝑘)
4 , 𝒚(𝑘)

5 } ,

where 𝒚(𝑘)
4 = 𝒙𝑘 + √2

2 Δ𝑘𝒅(𝑘)
1 + √2

2 Δ𝑘𝒅(𝑘)
2 , and 𝒚(𝑘)

5 = 𝒙𝑘 + Δ𝑘𝒅(𝑘)
1 . Note that the

points 𝒙𝑘, 𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 , 𝒚(𝑘)

4 , 𝒚(𝑘)
5 are fixed in distribution, so such alternatives are fea-

sible. Therefore, we obtain 𝑄+
𝑘 according to the interpolation condition

𝑄+
𝑘 (𝒯 (𝑘+1)

𝒅(𝑘+1)
1 ,𝒅(𝑘+1)

∗
(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ 𝒴 (4-11)

where 𝒴 ⊂ 𝒴+
𝑘 and 𝒴 is a well-posed set containing six interpolation points.

The above correction ensures that the interpolation set used in constructing the
quadratic model 𝑄+

𝑘 is well-posed. Consequently, we can obtain a reliable 2D quadratic
model 𝑄+

𝑘 . Then, the 1D model 𝑄sub
𝑘+1 is set as

𝑄sub
𝑘+1(𝛼) = 𝑄+

𝑘 (𝛼, 0), ∀ 𝛼 ∈ ℜ. (4-12)

In fact, 2D-MoSub saves computational cost in a certain sense, since it does not
require executing a complicated subroutine to implement model improvement as in tra-
ditional algorithms.
Remark 4.2. In successful steps there is another way to obtain the correctedmodel𝑄+

𝑘 . It
is based on the updated interpolation set 𝒳+

𝑘 = 𝒳𝑘 ∪{𝒙𝑘+1}\{𝒙𝑘−1} using the minimum
norm updating method. In this case, we only need to solve the KKT system correspond-
ing to the minimum norm updated quadratic model subproblem, and the user can freely
choose how to perform the correction.
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If the trial point 𝒙+
𝑘 obtained by solving the trust-region subproblem of the model

function 𝑄𝑘 fails to achieve sufficient reduction in the function value, provided that
𝒙+

𝑘 ∉ {𝒙𝑘−1, 𝒙𝑘, 𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 }, our method will re-solve the trust-region subproblem

of the corrected quadratic model 𝑄mod
𝑘 . In this case, we construct the corrected model

𝑄mod
𝑘 via the interpolation condition

𝑄mod
𝑘 (𝒯 (𝑘)

𝒅(𝑘)
1 ,𝒅(𝑘)

2
(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ 𝒴mod

𝑘 , (4-13)

where

𝒴mod
𝑘 =

⎧⎪
⎪
⎨
⎪
⎪⎩

{𝒙𝑘−1, 𝒙𝑘, 𝒙+
𝑘 , 𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 } , if 𝒙𝑘 ≠ 𝒙𝑘−1,

{𝒙𝑘, 𝒙+
𝑘 , 𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 , 𝒚(𝑘)
4 } , if 𝒙𝑘 = 𝒙𝑘−1 and 𝒙+

𝑘 ≠ 𝒚(𝑘)
4 ,

{𝒙𝑘, 𝒙+
𝑘 , 𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 , 𝒚(𝑘)
5 } , otherwise.

Note that the function values of all interpolation points above have already been evalu-
ated, so such interpolation does not require additional function evaluations.

The quadratic models are very important for characterizing the nature of the itera-
tions obtained by solving the 2D trust-region subproblem. Table 4-1 presents the inter-
polation conditions of the models used in our method.

Table 4-1 Interpolation conditions for models used in 2D-MoSub

Model Dim. Interpolation condition

𝑄sub
𝑘 1 𝑄sub

𝑘 (𝛼) = 𝑄+
𝑘−1(𝛼, 0)

𝑄𝑘 2 𝑄𝑘(𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ {𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 } & 𝑄𝑘(𝛼, 0) = 𝑄sub

𝑘 (𝛼)

𝑄+
𝑘 2 𝑄+

𝑘 (𝒯 (𝑘+1)
𝒅(𝑘+1)

1 ,𝒅(𝑘+1)
∗

(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ 𝒴, where 𝒴 ⊂ 𝒴+
𝑘 and |𝒴| = 6

𝑄mod
𝑘 2 𝑄mod

𝑘 (𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ 𝒴mod
𝑘

Considering that in most cases we have 𝒅(𝑘)
1 = 𝒙𝑘−𝒙𝑘−1

‖𝒙𝑘−𝒙𝑘−1‖2
, which is approximately

a gradient descent direction, it can be regarded that the new model 𝑄𝑘 inherits the good
properties of the models 𝑄𝑘−1 and 𝑄+

𝑘−1 along the approximate gradient descent direc-
tion.

Similar to traditional trust-region methods, 2D-MoSub finds the optimal trial step
within the corresponding trust region by solving a 2D trust-region subproblem. It then
evaluates the quality of the trial step by using the ratio of the actual reduction in the
function value to the predicted reduction in the model value. Based on this ratio and
predefined thresholds, the algorithm updates the subspace, interpolation set, trust-region
parameters, and iteration points.
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Algorithm 10 Step 3. Trust-region trial step
1: Solve the trust-region subproblem

min
𝛼,𝛽

𝑄𝑘(𝛼, 𝛽)

s. t. 𝛼2 + 𝛽2 ≤ Δ2
𝑘

and obtain 𝛼(𝑘) and 𝛽(𝑘). Then set

𝒙pre
𝑘 = 𝒙𝑘 + 𝛼(𝑘)𝒅(𝑘)

1 + 𝛽(𝑘)𝒅(𝑘)
2 ,

𝒙+
𝑘 = min

𝒙∈{𝒙𝑘,𝒙pre
𝑘 ,𝒚(𝑘)

1 ,𝒚(𝑘)
2 ,𝒚(𝑘)

3 }
𝑓(𝒙).

2: If 𝒙+
𝑘 ∈ {𝒙𝑘, 𝒙𝑘−1}, then set 𝒙𝑘+1 = 𝒙𝑘, Δ𝑘+1 = Δ𝑘 without applying (4-14),

and set 𝒅(𝑘+1)
1 = 𝒅(𝑘)

1 without applying (4-15), then go to Step 4 of the 2D-MoSub
framework.

3: Otherwise, compute

𝜌𝑘 =
𝑓(𝒙+

𝑘 ) − 𝑓(𝒙𝑘)
𝑄𝑘(𝒯 (𝑘)

𝒅(𝑘)
1 ,𝒅(𝑘)

2
(𝒙+

𝑘 )) − 𝑄𝑘(0, 0)
.

4: If 𝜌𝑘 ≥ 𝜂 or 𝒙+
𝑘 ∈ {𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 }, then set 𝒙𝑘+1 = 𝒙+
𝑘 and go to Step 4 of the

2D-MoSub framework.
5: Otherwise, obtain the modified model 𝑄mod

𝑘 through (4-13) and solve the trust-
region subproblem

min
𝛼,𝛽

𝑄mod
𝑘 (𝛼, 𝛽)

s. t. 𝛼2 + 𝛽2 ≤ Δ2
𝑘,

and obtain 𝛼(𝑘,mod) and 𝛽(𝑘,mod). Then set

𝒙mod
𝑘 = 𝒙𝑘 + 𝛼(𝑘,mod)𝒅(𝑘)

1 + 𝛽(𝑘,mod)𝒅(𝑘)
2 .

6: If 𝒙mod
𝑘 ∈ {𝒙𝑘, 𝒙𝑘−1}, then set 𝒙𝑘+1 = 𝒙𝑘, Δ𝑘+1 = Δ𝑘 without applying (4-14),

and set 𝒅(𝑘+1)
1 = 𝒅(𝑘)

1 without applying (4-15), then go to Step 4 of the 2D-MoSub
framework.

7: Otherwise, set
𝒙+

𝑘 = arg min
𝒙∈{𝒙+

𝑘 ,𝒙mod
𝑘 }

𝑓(𝒙).

Compute

𝜌𝑘 =
𝑓(𝒙+

𝑘 ) − 𝑓(𝒙𝑘)
𝑄𝑘(𝒯 (𝑘)

𝒅(𝑘)
1 ,𝒅(𝑘)

2
(𝒙+

𝑘 )) − 𝑄𝑘(𝒙𝑘)
.

8: If 𝜌𝑘 ≥ 𝜂0, then set 𝒙𝑘+1 = 𝒙+
𝑘 and go to Step 4 of the 2D-MoSub framework.
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9: Otherwise, set 𝒙𝑘+1 = 𝒙𝑘, 𝒅(𝑘+1)
1 = 𝒅(𝑘)

1 without applying (4-15), then go to Step
4 of the 2D-MoSub framework.

In the trust-region trial step, we perform the following operations. First, we solve the
trust-region subproblem to find theminimizer of the quadraticmodel𝑄𝑘(𝛼, 𝛽)within the
trust region. Next, we compute the corresponding decrease in the function value based
on 𝑄𝑘 and the objective function 𝑓 . Then, we calculate the ratio between the actual
reduction in the objective function and the predicted reduction in the model function,
and compare it with predefined thresholds. We then update Δ𝑘 and 𝒅(𝑘)

1 accordingly.
The above explanation only gives the basic idea of the trust-region trial step; further
details are provided in the pseudocode of Step 3 of the algorithm.

In the trust-region trial step, we follow the pseudocode in Step 3 of the algorithmic
framework. In our current test implementation, the algorithm solves the trust-region
subproblem using the truncated conjugate gradient method [161, 162].

Similar to traditional trust-region methods, 2D-MoSub updates the trust-region ra-
dius based on the quality of the trial step. If the radius becomes smaller than the lower
bound, 2D-MoSub terminates. Otherwise, the algorithm updates the subspace by com-
puting a new direction based on the updated solution. 2D-MoSub then constructs a new
1D quadratic interpolation model in the updated subspace. The details are given in the
pseudocode for the update step, which is listed as Step 4 of 2D-MoSub.

Algorithm 11 Step 4. Update
1: If Δ𝑘 < Δlow, then terminate.
2: Otherwise, update Δ𝑘+1 as

Δ𝑘+1 =
{

𝛾1Δ𝑘, if 𝜌𝑘 ≥ 𝜂,
𝛾2Δ𝑘, otherwise.

(4-14)

3: Set
𝒅(𝑘+1)

1 =
𝒙𝑘+1 − 𝒙𝑘

‖𝒙𝑘+1 − 𝒙𝑘‖2
. (4-15)

4: Update 𝑄𝑘 according to the interpolation condition (4-11), and obtain 𝑄+
𝑘 .

5: Obtain the 1D model 𝑄sub
𝑘+1 satisfying (4-12).

6: Let 𝑘 = 𝑘 + 1, and go to Step 1 of the 2D-MoSub framework.

Figure 4-2 illustrates the 𝑘-th iteration of 2D-MoSub.

4.1.2 Poisedness and Quality of the Interpolation Set

In this section, we discuss and analyze the poisedness and quality of the interpolation
set used at each step when constructing the quadratic interpolation model 𝑄𝑘. As we
have noted, the quality of an interpolation model in a given region is determined by the
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𝒙𝑘−1 𝒙𝑘

𝒚(𝑘)
1

𝒚(𝑘)
2

𝒚(𝑘)
3

𝒅(𝑘)
1

𝒅(𝑘)
2

Figure 4-2 The iterative case at the 𝑘-th step and the subspace 𝒙𝑘 + span{𝒅(𝑘)
1 , 𝒅(𝑘)

2 }

locations of its interpolation points. It is well known that Λ-poisedness is a concept that
measures how well a set of points is distributed, which ultimately determines how well
the interpolation model approximates the objective function.

As mentioned earlier, the most commonly used measure of the poisedness of points
in the region of interest at the current iteration is based on the Lagrange polynomials.
Given a set 𝒴 = {𝒚1, ⋯ , 𝒚𝑝} containing 𝑝 points, the basis of the Lagrange polynomials
satisfies

𝑙𝑗(𝒚𝑖) =
{

1, if 𝑖 = 𝑗,
0, otherwise.

Next, we briefly recall the most classical definition of Λ-poisedness [20].

Definition 4.2 (Λ-poisedness). If a set of points 𝒴 is linearly independent over the set
ℬ, and the corresponding Lagrange polynomials {𝑙1, ⋯ , 𝑙𝑝} satisfy

Λ ≥ max
1≤𝑖≤𝑝

max
𝒙∈ℬ |𝑙𝑖(𝒙)| ,

then we say that 𝒴 is Λ-poised on ℬ.

In our case, considering that our algorithm constructs a new 2D model 𝑄𝑘 with 3
fixed coefficients and 3 unknown coefficients determined by the interpolation conditions
(4-9), we give the following definition and discussion.

Definition 4.3 (Basis functions). Given 𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 , 𝒙𝑘 and 𝒅(𝑘)

1 , 𝒅(𝑘)
2 ∈ ℜ𝑛, let

(𝛼(𝑘)
𝑖 , 𝛽(𝑘)

𝑖 )⊤ = 𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒚(𝑘)
𝑖 ), 𝑖 = 1, 2, 3,
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and the basis matrix1

𝜳 =
⎛
⎜
⎜
⎜
⎝

𝛽(𝑘)
1 (𝛽(𝑘)

1 )2 𝛼(𝑘)
1 𝛽(𝑘)

1
𝛽(𝑘)

2 (𝛽(𝑘)
2 )2 𝛼(𝑘)

2 𝛽(𝑘)
2

𝛽(𝑘)
3 (𝛽(𝑘)

3 )2 𝛼(𝑘)
3 𝛽(𝑘)

3

⎞
⎟
⎟
⎟
⎠

,

with 𝑐(𝑖)
0 = 𝑓(𝒙𝑘) + 𝑎(𝑘)𝛼(𝑘)

𝑖 + 𝑏(𝑘)(𝛼(𝑘)
𝑖 )2, 𝑖 = 1, 2, 3, and

⎛
⎜
⎜
⎜
⎝

ℎ1
𝑑1
𝑒1

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
⎛
⎜
⎜
⎜
⎝

1 − 𝑐(1)
0

−𝑐(1)
0

−𝑐(1)
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

ℎ2
𝑑2
𝑒2

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
⎛
⎜
⎜
⎜
⎝

−𝑐(2)
0

1 − 𝑐(2)
0

−𝑐(2)
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

ℎ3
𝑑3
𝑒3

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
⎛
⎜
⎜
⎜
⎝

−𝑐(3)
0

−𝑐(3)
0

1 − 𝑐(3)
0

⎞
⎟
⎟
⎟
⎠

.

The basis functions are

𝑙𝑖(𝛼, 𝛽) = 𝑐(𝑖)
0 + ℎ𝑖𝛽 + 𝑑𝑖𝛽2 + 𝑒𝑖𝛼𝛽, 𝑖 = 1, 2, 3. (4-16)

We now define Λ-poisedness in our specific setting.

Definition 4.4 (Λ-poisedness with 3 known coefficients in 2D). If a set𝒴 ⊂ ℜ2 contain-
ing 3 points is linearly independent, and the basis polynomials {𝑙1, 𝑙2, 𝑙3} associated
with 𝒴 satisfy

Λ ≥ max
1≤𝑖≤3

max
‖(𝛼,𝛽)⊤‖∞≤Δ𝑘

|𝑙𝑖(𝛼, 𝛽)|, (4-17)

then we say that 𝒴 is Λ-poised over the set {(𝛼, 𝛽)⊤ ∶ ‖(𝛼, 𝛽)⊤‖∞ ≤ Δ𝑘}.

Remark 4.3. Under this measure, the most poised interpolation set is 1-poised. Note that
in Definition 4.4, the region is an ℓ∞-norm ball, which is adopted to obtain a closed-
form analytic solution without loss of generality.

Theorem 4.5. During each iteration in the quadratic interpolation model construction
step, 2D-MoSub has the following Lagrange basis functions for computation.

In the case where 𝑓(𝒙𝑘) ≤ 𝑓(𝒚(𝑘)
1 ), we have

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝑙1(𝛼, 𝛽) = 𝑐(1)
0 + 1

2Δ𝑘
𝛽 +

1 − 2𝑐(1)
0

2Δ2
𝑘

𝛽2 +
(

− 1
Δ2

𝑘 )
𝛼𝛽,

𝑙2(𝛼, 𝛽) = 𝑐(2)
0 + (− 1

2Δ𝑘 ) 𝛽 +
1 − 2𝑐(2)

0
2Δ2

𝑘
𝛽2,

𝑙3(𝛼, 𝛽) = 𝑐(3)
0 +

(
−

𝑐(3)
0

Δ2
𝑘 )

𝛽2 + 1
Δ2

𝑘
𝛼𝛽,

(4-18)

1We consider the invertible case.
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In the case where 𝑓(𝒙𝑘) > 𝑓(𝒚(𝑘)
1 ), we have

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝑙1(𝛼, 𝛽) = 𝑐(1)
0 +

4 − 3𝑐(1)
0

2Δ𝑘
𝛽 +

−2 + 𝑐(1)
0

2Δ2
𝑘

𝛽2 +
(

− 1
Δ2

𝑘 )
𝛼𝛽,

𝑙2(𝛼, 𝛽) = 𝑐(2)
0 +

(
−

1 + 3𝑐(2)
0

2Δ𝑘 )
𝛽 +

1 + 𝑐(2)
0

2Δ2
𝑘

𝛽2,

𝑙3(𝛼, 𝛽) = 𝑐(3)
0 +

(
−

3𝑐(3)
0

2Δ𝑘 )
𝛽 +

𝑐(3)
0

2Δ2
𝑘

𝛽2 + 1
Δ2

𝑘
𝛼𝛽,

(4-19)

where 𝑐(1)
0 = 𝑓(𝒙𝑘), 𝑐(2)

0 = 𝑓(𝒙𝑘), 𝑐(3)
0 = 𝑓(𝒙𝑘) + 𝑎(𝑘)Δ𝑘 + 𝑏(𝑘)Δ2

𝑘.

Proof. In the case where 𝑓(𝒙𝑘) ≤ 𝑓(𝒚(𝑘)
1 ), we have

𝜳1 =
⎛
⎜
⎜
⎜
⎝

Δ𝑘 Δ2
𝑘 0

−Δ𝑘 Δ2
𝑘 0

Δ𝑘 Δ2
𝑘 Δ2

𝑘

⎞
⎟
⎟
⎟
⎠

, (4-20)

and

⎛
⎜
⎜
⎜
⎝

ℎ1
𝑑1
𝑒1

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
1

⎛
⎜
⎜
⎜
⎝

1 − 𝑐(1)
0

−𝑐(1)
0

−𝑐(1)
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

ℎ2
𝑑2
𝑒2

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
1

⎛
⎜
⎜
⎜
⎝

−𝑐(2)
0

1 − 𝑐(2)
0

−𝑐(2)
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

ℎ3
𝑑3
𝑒3

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
1

⎛
⎜
⎜
⎜
⎝

−𝑐(3)
0

−𝑐(3)
0

1 − 𝑐(3)
0

⎞
⎟
⎟
⎟
⎠

.

In the case where 𝑓(𝒙𝑘) > 𝑓(𝒚(𝑘)
1 ), we have

𝜳2 =
⎛
⎜
⎜
⎜
⎝

Δ𝑘 Δ2
𝑘 0

2Δ𝑘 4Δ2
𝑘 0

Δ𝑘 Δ2
𝑘 Δ2

𝑘

⎞
⎟
⎟
⎟
⎠

, (4-21)

and

⎛
⎜
⎜
⎜
⎝

ℎ1
𝑑1
𝑒1

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
2

⎛
⎜
⎜
⎜
⎝

1 − 𝑐(1)
0

−𝑐(1)
0

−𝑐(1)
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

ℎ2
𝑑2
𝑒2

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
2

⎛
⎜
⎜
⎜
⎝

−𝑐(2)
0

1 − 𝑐(2)
0

−𝑐(2)
0

⎞
⎟
⎟
⎟
⎠

,
⎛
⎜
⎜
⎜
⎝

ℎ3
𝑑3
𝑒3

⎞
⎟
⎟
⎟
⎠

= 𝜳 −1
2

⎛
⎜
⎜
⎜
⎝

−𝑐(3)
0

−𝑐(3)
0

1 − 𝑐(3)
0

⎞
⎟
⎟
⎟
⎠

.

Thus, we can conclude (4-18) and (4-19).

Figure 4-3 illustrates the different cases of 𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 .

Proposition 4.6. In the case 𝑓(𝒙𝑘) ≤ 𝑓(𝒚(𝑘)
1 ), the interpolation set {𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 }
is Λ1-poised with Λ1 = 2. In the case 𝑓(𝒙𝑘) > 𝑓(𝒚(𝑘)

1 ), the interpolation set
{𝒚(𝑘)

1 , 𝒚(𝑘)
2 , 𝒚(𝑘)

3 } is Λ2-poised with Λ2 ≤ max{4, 1 + 3Δ𝑘(|𝑎(𝑘)| + |𝑏(𝑘)|Δ𝑘)}.
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𝒚(𝑘)
1

𝒚(𝑘)
2

𝒚(𝑘)
3

2Δ𝑘

Δ𝑘 𝒚(𝑘)
1

𝒚(𝑘)
2 𝒚(𝑘)

3

2Δ𝑘

Δ𝑘

𝒚(𝑘)
1

𝒚(𝑘)
2

𝒚(𝑘)
3

Δ𝑘

Δ𝑘 𝒚(𝑘)
1

𝒚(𝑘)
2

𝒚(𝑘)
3

Δ𝑘

Δ𝑘

Figure 4-3 Different cases for 𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3
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Proof. According to Theorem 4.5 and the closed-form solutions of the two-dimensional
problems in this proposition,

max
1≤𝑖≤3

max
‖(𝛼,𝛽)⊤‖∞≤Δ𝑘

|𝑙𝑖(𝛼, 𝛽)|

the conclusion follows directly after computation.

In view of Remark 4.3, the interpolation set used by the 2D-MoSub algorithm is
sufficiently poised on the 2D subspace.

4.1.3 Some Properties of 2D-MoSub

The main idea of our newly proposed subspace derivative-free optimization method
2D-MoSub is to obtain an iterate at each step by minimizing a quadratic model function
within a trust region on a 2D subspace. The quadratic model in the current 2D subspace,
together with the model defined along one dimension of the 2D subspace, inherits the
good properties of the previous subspaces, models, and iterates.

To construct a determined quadratic interpolation model function at each step, 2D-
MoSub acquires 3 new interpolation points to determine the other 3 undetermined coef-
ficients of the 2D quadratic model—those coefficients not already fixed by the previous
model.

We now discuss relevant properties of our method. Note that, in theory, for 𝒙𝑘+1 =
𝒙𝑘 + 𝛼(𝑘)𝒅(𝑘)

1 + 𝛽(𝑘)𝒅(𝑘)
2 , the pair 𝛼(𝑘) and 𝛽(𝑘) satisfies

(𝛼(𝑘), 𝛽(𝑘))⊤ ∈ {arg min
𝛼,𝛽

𝑄𝑘(𝛼, 𝛽), s. t. 𝛼2 + 𝛽2 ≤ Δ2
𝑘} .

We have the following proposition.

Proposition 4.7. We have

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

min
𝛼2+𝛽2≤Δ2

𝑘

𝑄+
𝑘 (𝒯 (𝑘+1)

𝒅(𝑘+1)
1 ,𝒅(𝑘+1)

∗
(𝒙𝑘 + 𝛼𝒅(𝑘)

1 + 𝛽𝒅(𝑘)
2 )) ≤ 𝑓(𝒙𝑘+1),

min
−Δ𝑘≤𝛼≤Δ𝑘

𝑄sub
𝑘+1( ̂𝒯 (𝑘+1)

𝒅(𝑘+1)
1

(𝒙𝑘 + 𝛼𝒅(𝑘+1)
1 )) ≤ 𝑓(𝒙𝑘+1),

min
𝛼2+𝛽2≤Δ2

𝑘+1

𝑄𝑘+1(𝒯 (𝑘+1)
𝒅(𝑘+1)

1 ,𝒅(𝑘+1)
2

(𝒙𝑘+1 + 𝛼𝒅(𝑘+1)
1 + 𝛽𝒅(𝑘+1)

2 )) ≤ 𝑓(𝒙𝑘+1).

(4-22)

Proof. By definition, the proposition follows directly.

Updating our new model in the manner described above has two advantages. One
advantage is that the model 𝑄𝑘+1 sufficiently accounts for the behavior of 𝑄𝑘 along the
one-dimensional subspace 𝒙𝑘+1 + span{𝒅(𝑘+1)

1 }, because 𝒙𝑘+1 itself has already been
obtained as a successful step produced by 𝑄𝑘. Another advantage is that minimizing
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𝑄𝑘+1 over the trust region yields iterates with nonincreasing model values according to
(4-22).

Moreover, the quadratic model 𝑄𝑘 obtained by 2D-MoSub is precisely the solution
of the subproblem

min
𝑄∈𝒬 ∫

∞

−∞
(𝑄(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼

s. t. 𝑄(𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒛)) = 𝑓(𝒛), ∀ 𝒛 ∈ {𝒙𝑘, 𝒚(𝑘)
1 , 𝒚(𝑘)

2 , 𝒚(𝑘)
3 }

(4-23)

in the sense that 𝑄𝑘 coincides with 𝑄+
𝑘−1 along the direction 𝒅(𝑘)

1 , which is in fact a
numerically approximate gradient-descent direction.

We next establish the convexity of subproblem (4-23).

Theorem 4.8. For any quadratic function 𝑄 satisfying the interpolation conditions in
subproblem (4-23), the subproblem (4-23) is strictly convex.

Proof. For 0 < 𝑐 < 1 and two distinct 2D quadratic functions 𝑄𝑎 and 𝑄𝑏 that satisfy
the interpolation conditions in (4-23), we have

∫
∞

−∞
(𝑐𝑄𝑎(𝛼, 0) + (1 − 𝑐)𝑄𝑏(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼

< 𝑐 ∫
∞

−∞
(𝑄𝑎(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼 + (1 − 𝑐) ∫

∞

−∞
(𝑄𝑏(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼.
(4-24)

In fact, the difference between the right-hand side and the left-hand side of (4-24) is

− 2𝑐(1 − 𝑐) ∫
∞

−∞
𝑄𝑎(𝛼, 0)𝑄𝑏(𝛼, 0)𝑑𝛼 + (𝑐 − 𝑐2) ∫

∞

−∞
(𝑄𝑎(𝛼, 0))2𝑑𝛼

+ (1 − 𝑐 − (1 − 𝑐)2) ∫
∞

−∞
(𝑄𝑏(𝛼, 0))2𝑑𝛼

= (𝑐 − 𝑐2) ∫
∞

−∞
(𝑄𝑎(𝛼, 0) − 𝑄𝑏(𝛼, 0))2𝑑𝛼 < 0,

because 0 < 𝑐 < 1 and 𝑄𝑎(𝛼, 0) ≠ 𝑄𝑏(𝛼, 0) (which follows from 𝑄𝑎 ≠ 𝑄𝑏 together with
the interpolation conditions they satisfy). Therefore, we obtain the strict convexity of
the objective of the subproblem.

The above theorem shows that the model 𝑄𝑘 obtained by 2D-MoSub is indeed the
unique solution of subproblem (4-23).

The above discussion highlights the advantages of the 2D-MoSub algorithm when
𝒅(𝑘)

1 is an approximate gradient descent direction. We can also establish the following
result.
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Theorem 4.9. If 𝑄𝑘 is the solution of subproblem (4-23), then for a quadratic function
𝑓 , we have

∫
∞

−∞
(𝑄𝑘(𝛼, 0) − ̃𝑓 (𝛼, 0))

2 𝑑𝛼 = ∫
∞

−∞
(𝑄+

𝑘−1(𝛼, 0) − ̃𝑓 (𝛼, 0))
2 𝑑𝛼

− ∫
∞

−∞
(𝑄𝑘(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼,

(4-25)

where ̃𝑓 = 𝑓 ∘ (𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

)−1.

Proof. Let 𝑄𝑡 = 𝑄𝑘 + 𝑡 (𝑄𝑘 − ̃𝑓), where 𝑡 ∈ ℜ. Then 𝑄𝑡 is a quadratic function that
satisfies the interpolation conditions of subproblem (4-23). By the optimality of 𝑄𝑘, the
quadratic function

𝜑(𝑡) ∶= ∫
∞

−∞
(𝑄𝑡(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼

attains its minimum at 𝑡 = 0. Expanding 𝜑(𝑡), we obtain

𝜑(𝑡) = 𝑡2
∫

∞

−∞
(𝑄𝑘(𝛼, 0) − ̃𝑓 (𝛼, 0))

2 𝑑𝛼

+ 2𝑡 ∫
∞

−∞
(𝑄𝑘(𝛼, 0) − ̃𝑓 (𝛼, 0)) (𝑄𝑘(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0)) 𝑑𝛼

+ ∫
∞

−∞
(𝑄𝑘(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼,

which implies

∫
∞

−∞
(𝑄𝑘(𝛼, 0) − ̃𝑓 (𝛼, 0)) (𝑄𝑘(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0)) 𝑑𝛼 = 0.

Considering 𝜑(−1), the conclusion follows.

Moreover, the following corollary holds.

Corollary 4.10. If𝑄𝑘 is the solution of subproblem (4-23), then for a quadratic function
𝑓 , we have

∫
∞

−∞
(𝑄𝑘(𝛼, 0) − ̃𝑓 (𝛼, 0))

2 𝑑𝛼 ≤ ∫
∞

−∞
(𝑄+

𝑘−1(𝛼, 0) − ̃𝑓 (𝛼, 0))
2 𝑑𝛼, (4-26)

where ̃𝑓 = 𝑓 ∘ (𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

)−1.

Proof. From equation (4-25) and the inequality

∫
∞

−∞
(𝑄𝑘(𝛼, 0) − 𝑄+

𝑘−1(𝛼, 0))
2 𝑑𝛼 ≥ 0,

inequality (4-26) immediately follows.
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The above results indicate that the model 𝑄𝑘 generated by our 2D-MoSub algorithm
provides, along direction 𝒅(𝑘)

1 , a better approximation to the objective function than the
corrected model 𝑄+

𝑘−1 from the previous step, in a certain sense.
Next, we present the function value decrease behavior of 2D-MoSub. We have the

following proposition.

Proposition 4.11. The iterates produced by 2D-MoSub yield nonincreasing objective
values, i.e.,

𝑓(𝒙𝑘+1) ≤ 𝑓(𝒙𝑘),

and on successful steps,

𝑓(𝒙𝑘+1) ≤ 𝑓(𝒙𝑘) − 𝜂 (𝑄𝑘(0, 0) − 𝑄𝑘(𝒯 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

(𝒙𝑘+1)))

holds.

Proof. The result follows directly from the algorithmic framework and the criterion
associated with (4-1).

The following result establishes the convergence of 2D-MoSub. Before stating it,
we present the basic assumptions.
Assumption 4.12. The objective function 𝑓 is bounded below, twice continuously differ-
entiable, and has bounded second derivatives. Let 𝐶 denote an upper bound of ‖∇2𝑓‖2.
There exists an infinite index set ℐ ⊆ ℕ+ such that
(1) There exists 𝜀1 > 0 such that ‖𝑷𝑘∇𝑓(𝒙𝑘)‖2 ≥ 𝜀1 ‖∇𝑓(𝒙𝑘)‖2 holds for 𝑘 ∈ ℐ, where
𝑷𝑘 is the orthogonal projector from ℜ𝑛 onto the two-dimensional subspace 𝒮 (𝑘)

𝒅(𝑘)
1 ,𝒅(𝑘)

2
;

(2) 𝑓(𝒙𝑘+1) − inf𝒅∈𝒮 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

𝑓(𝒙𝑘 + 𝒅) → 0 as 𝑘 ∈ 𝒦 and 𝑘 → ∞.

The convergence theorem below for our method follows and extends Theorem 5.7
in Zhang [46].

Theorem 4.13. If the objective function 𝑓 and 2D-MoSub satisfy Assumption 4.12, then

lim inf
𝑘→∞ ‖∇𝑓(𝒙𝑘)‖2 = 0,

where each 𝒙𝑘 is the iterate generated by 2D-MoSub.

Proof. The proof here follows and extends the proof of Theorem 5.7 in Zhang [46]. In
fact, we aim to prove that when 𝑘 ∈ ℐ and 𝑘 → ∞, it holds that ‖∇𝑓(𝒙𝑘)‖2 → 0.
We proceed by contradiction. Suppose the conclusion does not hold. Then there exist
𝜀2 > 0 and an infinite subset ℐsub of ℐ such that: for all 𝑘 ∈ ℐsub, ‖∇𝑓(𝒙𝑘)‖2 ≥ 𝜀2. By
Assumption 4.12, without loss of generality, we may assume that for all 𝑘 ∈ ℐsub,

‖𝑷𝑘∇𝑓(𝒙𝑘)‖2 ≥ 𝜀1 ‖∇𝑓(𝒙𝑘)‖2 ,

133



Algorithms and Theory of Derivative-Free Optimization

and for any 𝑘 ∈ ℐsub,

𝑓(𝒙𝑘+1) − inf
𝑥∈𝒮 (𝑘)

𝒅(𝑘)
1 ,𝒅(𝑘)

2

𝑓(𝒙𝑘 + 𝒅) ≤
𝜀2

1𝜀2
2

4𝐶 . (4-27)

Based on Lemma 5.5 in Zhang [46], we have

𝑓(𝒙𝑘) − inf
𝒅∈𝒮 (𝑘)

𝒅(𝑘)
1 ,𝒅(𝑘)

2

𝑓(𝒙𝑘 + 𝒅) ≥ 1
2𝐶 ‖𝑷𝑘∇𝑓(𝒙𝑘)‖

2
2 . (4-28)

Subtracting inf𝒅∈𝒮 (𝑘)
𝒅(𝑘)

1 ,𝒅(𝑘)
2

𝑓(𝒙𝑘 + 𝒅) from 𝑓(𝒙𝑘) and 𝑓(𝒙𝑘+1) respectively and then tak-

ing the difference, together with (4-27) and (4-28), yields

𝑓(𝒙𝑘) − 𝑓(𝒙𝑘+1) ≥ 1
2𝐶 ‖𝑷𝑘∇𝑓(𝒙𝑘)‖

2
2 −

𝜀2
1𝜀2

2
4𝐶 ≥

𝜀2
1𝜀2

2
2𝐶 −

𝜀2
1𝜀2

2
4𝐶 =

𝜀2
1𝜀2

2
4𝐶 .

This contradicts the facts that ℐsub is an infinite subset and 𝑓 is bounded below.

Note that Assumption 4.12 is a sufficient condition for the convergence of our 2D-
MoSub method. Below we state, without proof, the result of Lemma 5.5 from Zhang
[46].

Proposition 4.14. Assume the objective function 𝑓 is bounded below, twice continu-
ously differentiable, and has bounded second derivatives. Let 𝐶 denote an upper bound
of ‖∇2𝑓‖, and let 𝒮 be a subspace of ℜ𝑛. Then

𝑓(𝒙) − inf
𝒅∈𝒮

𝑓(𝒙 + 𝒅) ≥ 1
2𝐶 ‖𝑷 ∇𝑓(𝒙)‖2

2 ,

where 𝑷 is the orthogonal projector from ℜ𝑛 onto 𝒮 .

4.1.4 Numerical Results

We now present some experimental results to demonstrate the performance of the 2D-
MoSub algorithm on the tested optimization problems. Table 4-2 shows the parameter
settings used when testing our algorithm.

To illustrate the general numerical performance of our subspace method, we tested
several classical benchmark problems and used Performance Profiles and Data Profiles
to present the results. The test problems are listed in Table 4-3, and are drawn from
classical collections of unconstrained optimization test functions, including CUTEr and
CUTEst [177, 208], among others.

The problem dimensions range from 10 to 20000. Moreover, all algorithms start
from the same initial point 𝒙int, and the accuracy tolerance 𝜏 in the Profile plots is set
to 10−1, 10−3, and 10−5, respectively. We compared 2D-MoSub with Nelder-Mead
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Table 4-2 2D-MoSub Paremeters

Parameter Value Description

Δ1 1 Initial trust-region radius
Δlow 1 × 10−4 Lower bound of trust-region radius

Δupper 1 × 104 Upper bound of trust-region radius
𝛾1 10 Trust-region expansion factor
𝛾2 0.1 Trust-region contraction factor
𝜂 0.2 Threshold for successful step
𝜂0 0.1 Threshold for modified successful step

𝒅(1) (1, 0, ⋯ , 0) Initial direction

[191], NEWUOA [94], DFBGN [141], and CMA-ES [131]. Note that this selection
of comparison algorithms is motivated by the fact that, in addition to the two classi-
cal derivative-free optimization methods Nelder-Mead and NEWUOA, the algorithms
DFBGN and CMA-ES incorporate techniques designed for large-scale derivative-free
optimization.

From Figures 4-4 and 4-5, we observe that 2D-MoSub is able to solvemost problems
better than the other algorithms considered. It should be noted that the test set includes
both easy and difficult problems (depending on dimension, starting point, and function
structure). For simple problems, all methods achieve solutions within relatively few
evaluations, and the differences are not significant (as seen in the early rise of the Data
Profile curves, which reflects specially selected simple problems). However, for more
difficult problems, the differences in performance become much more pronounced.

4.1.5 Summary

In this section, we proposed a new large-scale derivative-free optimization method, 2D-
MoSub, based on trust-region techniques and subspace strategies. Ourmethod generates
iterations by solving two-dimensional trust-region subproblems. In addition, we defined
the two-dimensional subspace Λ-poisedness for interpolation sets at iteration 𝑘 with
three known coefficients. We presented the main steps of the algorithm and analyzed its
theoretical properties. Numerical results demonstrated the advantages of applying 2D-
MoSub to derivative-free optimization problems. Future work includes designing new
strategies for subspace selection and extending the method to large-scale constrained
derivative-free optimization problems.
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Table 4-3 Test problems for Figure 4-4 and Figure 4-5

ARGLINA ARGLINA4 ARGLINB ARGLINC ARGTRIG
ARWHEAD BDQRTIC BDQRTICP BDVALUE BROWNAL
BROYDN3D BROYDN7D BRYBND CHAINWOO CHEBQUAD
CHNROSNB CHPOWELLB CHPOWELLS CHROSEN COSINE
CRAGGLVY CUBE CURLY10 CURLY20 CURLY30
DIXMAANE DIXMAANF DIXMAANG DIXMAANH DIXMAANI
DIXMAANJ DIXMAANK DIXMAANL DIXMAANM DIXMAANN
DIXMAANO DIXMAANP DQRTIC EDENSCH ENGVAL1
ERRINROS EXPSUM EXTROSNB EXTTET FIROSE
FLETCBV2 FLETCBV3 FLETCHCR FREUROTH GENBROWN
GENHUMPS GENROSE INDEF INTEGREQ LIARWHD
LILIFUN3 LILIFUN4 MOREBV MOREBVL NCB20
NCB20B NONCVXU2 NONCVXUN NONDIA NONDQUAR
PENALTY1 PENALTY2 PENALTY3 PENALTY3P POWELLSG
POWER ROSENBROCK SBRYBND SBRYBNDL SCHMVETT
SCOSINE SCOSINEL SEROSE SINQUAD SPARSINE
SPARSQUR SPMSRTLS SROSENBR STMOD TOINTGSS
TOINTTRIG TQUARTIC TRIGSABS TRIGSSQS TRIROSE1
TRIROSE2 VARDIM WOODS - -
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Figure 4-4 Performance Profile of solving test large-scale problems
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Figure 4-5 Data Profile of solving test large-scale problems
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4.2 A Derivative-Free Optimization Algorithm Combining Line Search and
Trust-Region Techniques

The speed-up slow-down (SUSD) direction is a new search direction that has been
shown, under certain conditions, to converge to the gradient descent direction. In this
section, we propose a derivative-free optimization algorithm, called SUSD-TR, which
combines the SUSD direction (based on the covariance matrix of interpolation points)
with the trust-region subproblem solution of the interpolation model function at the
current iteration. We analyze the optimization dynamical system of SUSD-TR and the
stability of its search directions, andwe describe the trial step and structure step in detail.
Numerical results demonstrate the advantages of our algorithm and show that SUSD-
TR significantly outperforms methods that rely solely on searching along the SUSD
direction. Compared with state-of-the-art derivative-free optimization algorithms, our
algorithm is competitive.

4.2.1 Background and Motivation

Consider the unconstrained optimization problem

min
𝒙∈ℜ𝑛

𝑓(𝒙), (4-29)

where 𝑓 ∶ ℜ𝑛 → ℜ is the objective function. As discussed earlier, no derivative infor-
mation of 𝑓 is available. It is well known that both line search methods and trust-region
methods are widely used for solving optimization problems. Line search methods seek
an (optimal) step size along the current search direction (for SUSD-based algorithms,
this refers to the step size for each point in the group). However, when the search di-
rection is inefficient, line search methods may lead to slow convergence. In contrast,
trust-region methods construct a local quadratic model function and seek its minimizer
within a trust region, which can mitigate the inefficiency of poor search directions at
the expense of higher computational cost. Nocedal and Yuan [209] discussed how to
combine line search and trust-region methods in gradient-based optimization to better
adapt to different search directions.

For a group of trial points moving simultaneously along the common SUSD di-
rection [117], we refer to the iteration process as a large-scale step. In practice, the
internal structure of the iterates (especially in large-scale steps) may not be well im-
proved. In brief, algorithms using the SUSD direction typically probe a set of points
simultaneously, then determine a common SUSD direction based on their distribution,
and finally update each point by moving along this direction with step sizes determined
by their function values.

Our idea is to modify this group of trial points before continuing along the SUSD
direction by introducing a new point inside the trust region and discarding one point.
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This new point is obtained as a minimizer of the local interpolation model within the
trust region. It can adjust or even reverse the search direction of the group, particularly
when the direction has deviated significantly. Thus, in addition to large-scale moves,
we incorporate trust-region model-based corrections, combining line search and trust-
region techniques.

The remainder of this section is organized as follows. Section 4.2.2 presents the
SUSD-TR algorithm that combines the SUSD direction with trust-region interpolation.
Section 4.2.3 analyzes the dynamical system of SUSD-TR and the stability of its search
directions. Section 4.2.4 describes the trial step and structure step in more detail.

4.2.2 Combination of SUSD Direction and Trust-Region Interpolation

Our algorithm mainly updates iterates using two steps: a trust-region step and a line
search step. The trust-region step is obtained by solving a trust-region subproblem of
the interpolation model function at each iteration. The line search step moves the search
points along the SUSD direction, denoted by 𝒗1. Here, the term search points refers to
the set of trial points at the current iteration.

Suppose we have 𝑚 search points, each being a candidate solution 𝒙𝑖 ∈ ℜ𝑛, 𝑖 =
1, ⋯ , 𝑚, with 𝑚 ≥ 𝑛, where 𝑛 is the dimension of problem (4-29). We define the co-
variance matrix 𝑪 ∈ ℜ𝑛×𝑛 as

𝑪 =
𝑚

∑
𝑖=1

(𝒙𝑖 − 𝒙𝑐) (𝒙𝑖 − 𝒙𝑐)
⊤ , (4-30)

where 𝒙𝑐 = 1
𝑚 ∑𝑚

𝑖=1 𝒙𝑖 is the center of the search points. Let 𝒗1, ⋯ , 𝒗𝑛 denote the unit
eigenvectors of 𝑪 , corresponding to the eigenvalues 𝜇1, ⋯ , 𝜇𝑛, sorted from the smallest
𝜇1 to the largest 𝜇𝑛 (with 𝜇1 ≠ 0). The vector 𝒗1 is the SUSD direction [117]. Algorithm
12 presents the SUSD-TR algorithm, which combines the SUSD direction with interpo-
lation and trust-region techniques. In Algorithm 12, ̄𝑓 (𝑘) denotes the minimum function
value among the interpolation (search) points at iteration 𝑘. The index 𝑘 represents the
iteration counter, and some parameters are expressed as functions of 𝑘.

Algorithm 12 SUSD-TR Algorithm
Input: Number of search points 𝑚, initial points 𝒙(0)

𝑖 , 𝑖 = 1, ⋯ , 𝑚, parameters 𝛽, Δ0,
termination parameters 𝑃 , 𝜀; 𝑘 = 0
while | ̄𝑓 (𝑘) − 1

𝑃 ∑𝑃
ℎ=1 ̄𝑓 (𝑘−ℎ)| > 𝜀 do

Compute 𝑪 (𝑘) and 𝒗(𝑘)
1 using standard PCA.

for 𝑖 = 1, ⋯ , 𝑚 do
Evaluate 𝑓 (𝑘)

𝑖 ∶= 𝑓(𝒙(𝑘)
𝑖 ).

end for
Compute Δ𝑘 = max

𝑖
(‖𝒙(𝑘)

𝑖 − 𝒙(𝑘)
𝑐 ‖2).
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if Δ𝑘 > 𝜅Δ𝑘−1 then
Structure step: Replace the point 𝒙(𝑘)

𝑑 farthest from the trust-region center
with 𝒙(𝑘)

new (Algorithm 13).
else

Model improvement step: Use the model improvement step (Algorithm 6.3
in Conn, Scheinberg, and Vicente [20]) to check and enhance poisedness of the in-
terpolation set.

Construct the current interpolation set 𝒳𝑘 from the latest 𝑚 search points, and
build a linear interpolation model 𝐿𝑘(𝒙) (or an underdetermined quadratic interpola-
tion model 𝑄𝑘(𝒙)) using (4-31) or (4-32).

Trial step: Solve the trust-region subproblem with truncated CG:

min
𝒙

𝐿𝑘(𝒙) or 𝑄𝑘(𝒙),

s. t. ‖𝒙 − 𝒙(𝑘)
𝑐 ‖2

≤ Δ𝑘,

and replace 𝒙(𝑘)
𝑑 (the current worst function value point) with 𝒙(𝑘)

new. Then update the
trust-region radius Δ𝑘.

end if
Compute ̄𝑓 (𝑘) ∶= min

𝑖
𝑓 (𝑘)

𝑖 .
for 𝑖 = 1, ⋯ , 𝑚 do

Compute 𝛼(𝒙(𝑘)
𝑖 ) = 𝛽[1 − exp( ̄𝑓 − 𝑓(𝒙(𝑘)

𝑖 ))].
Line search step: Update 𝒙(𝑘+1)

𝑖 = 𝒙(𝑘)
𝑖 + 𝛼(𝒙(𝑘)

𝑖 )𝒗(𝑘)
1 .

end for
Set 𝑘 = 𝑘 + 1.

end while
Output: 𝒙∗ = 𝒙𝑖, where 𝒙𝑖 is the point with the smallest function value in the final
iteration.

It can be seen that SUSD-TR is a derivative-free optimization algorithm that com-
bines line search and trust-region techniques. The group of search points moves along
the direction 𝒗1, which belongs to the line-search type, and then the algorithm solves a
trust-region subproblem for correction, thereby forming the iterative cycle.

SUSD-TR has several advantages. First, if data (including function values) are trans-
ferred between different computing nodes, the algorithm can be executed in a distributed
or parallelized manner. This is because in the line-search step, function evaluations at
the 𝑚 search points can be carried out simultaneously, significantly reducing the eval-
uation cost, especially for expensive-to-evaluate problems. Second, Algorithm 12 does
not rely on traditional gradient estimation, and therefore can operate without explicit
gradient information. Third, the optimization process can be expressed as a dynamical
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system, and by exploiting the continuous-time formulation, we can derive theoretical
results; this is uncommon in derivative-free optimization, but both novel and impor-
tant. Last but not least, compared with traditional finite-difference estimates, the search
points can be more flexibly distributed over the region of interest.
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Figure 4-6 Illustration of the general framework of SUSD-TR for a 2-dimensional problem

Figure 4-6 shows the iteration process of the SUSD-TR algorithm, where an empty
circle denotes the discarded point𝒙𝑑 at each iteration. At the 𝑘-th iteration, if the number
of search (sample) points is less than 1

2(𝑛 + 1)(𝑛 + 2), the quadratic interpolation model
𝑄𝑘 can be obtained by solving the subproblem

min
𝑄∈𝒬 ‖∇2𝑄 − ∇2𝑄𝑘−1‖

2
𝐹 ,

s. t. 𝑄(𝒙𝑖) = 𝑓(𝒙𝑖), ∀ 𝒙𝑖 ∈ 𝒳𝑘.
(4-31)

If a determined linear or quadratic interpolation model is available, then 𝐿𝑘 or 𝑄𝑘 can
be obtained by solving the system

𝑓(𝒙𝑖) = 𝐿𝑘(𝒙𝑖), ∀ 𝒙𝑖 ∈ 𝒳𝑘,
or 𝑓(𝒙𝑖) = 𝑄𝑘(𝒙𝑖), ∀ 𝒙𝑖 ∈ 𝒳𝑘.

(4-32)

In the numerical experiments, we present results using the underdetermined quadratic
model in SUSD-TR. For simplicity, in the following discussion we may omit the itera-
tion index (𝑘).

4.2.3 Stability Analysis of Iteration Directions in SUSD-TR

The optimization process of Algorithm 12, viewed as a dynamical system (or gradient
flow), can be written as

{
𝒙̇𝑖 = 𝛼(𝒙𝑖)𝒗1, 𝑖 = 1, ⋯ , 𝑑 − 1, 𝑑 + 1, ⋯ , 𝑚,
𝒙̇𝑑 = (𝛼(𝒙𝑑) + 𝜀1) (𝒗1 + 𝜀𝜀𝜀2) ,

(4-33)
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where 𝜀1 ∈ ℜ and 𝜀𝜀𝜀2 ∈ ℜ𝑛 are perturbation parameters for 𝒙𝑑 , indicating its update to
𝒙new through trust-region techniques. The overdot in (4-33) denotes the derivative with
respect to continuous time 𝑡 (corresponding to iteration 𝑘). The step size 𝛼 ∶ ℜ → ℜ
is an exponential-type mapping [117]:

𝛼(𝒙𝑖) = 𝛽 [1 − exp ( ̄𝑓 − 𝑓(𝒙𝑖))] , 𝑖 = 1, ⋯ , 𝑚, (4-34)

where 𝛽 > 0 is a constant and ̄𝑓 is the minimum function value among all search/inter-
polation points at the current iteration. For brevity, we denote 𝛼(𝒙𝑖) by 𝛼𝑖.'

&

$

%

𝒙(𝑘+1)
𝑑 = 𝒙̂(𝑘)

𝑑 + 𝛼(𝒙̂(𝑘)
𝑑 )𝒗1�� ��𝒙(𝑘+1)

𝑑 = 𝒙(𝑘)
𝑑 + (𝛼(𝒙(𝑘)

𝑑 ) + 𝜀1)(𝒗1 + 𝜀𝜀𝜀2)𝒙(𝑘)
𝑐

𝒙̂(𝑘)
𝑑 = 𝒙(𝑘)

new

𝒙(𝑘)
𝑑

𝒙(𝑘)
𝑐

𝛼(𝒙(𝑘)
𝑑 )𝒗1

(𝛼(𝒙(𝑘)
𝑑 ) + 𝜀1)(𝒗1 + 𝜀𝜀𝜀2)

𝛼(𝒙̂(𝑘)
𝑑 )𝒗1

Δ𝑘

Figure 4-7 The disturbance in (4-33)

Figure 4-7 depicts the dynamical system (4-33) with discrete iterations (time), where
𝒙(𝑘)

𝑑 is replaced by 𝒙̂(𝑘)
𝑑 in the trust-region step and then 𝒙̂(𝑘)

𝑑 advances to 𝒙(𝑘+1)
𝑑 in the

line-search step. Therefore, the new iterate can be written as

𝒙(𝑘+1)
𝑑 = 𝒙(𝑘)

𝑑 + (𝛼(𝒙(𝑘)
𝑑 ) + 𝜀1) (𝒗1 + 𝜀𝜀𝜀2) ,

where 𝜀1 denotes the perturbation of the step size and 𝜀𝜀𝜀2 denotes the directional pertur-
bation of 𝒙(𝑘)

𝑑 . This corresponds to the dynamical system (4-33). Next, we carry out the
analysis using the continuous dynamical system.
Remark 4.4. For the exponential step-size mapping (4-34), the next-step step size of the
point with the smallest function value in the current iteration is zero, which differs from
the case of a linear step-size mapping. Note that Figure 4-6 is intended to illustrate a
generic example of the SUSD-TR framework.

Lemma 4.15. The dynamical system for the SUSD-TR direction corresponding to (4-33)
is

̇𝒗1 =
⎛
⎜
⎜
⎝

𝑛

∑
𝑗=2

1
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗

⎞
⎟
⎟
⎠

[

𝑚

∑
𝑖=1

(𝛼𝑖 − 𝛼𝑎) (𝒙𝑖 − 𝒙𝑐) + 𝜀1 (𝒙𝑑 − 𝒙𝑐) + Φ𝒗1]
, (4-35)

where 𝒗𝑗 is the 𝑗-th unit eigenvector of the matrix 𝑪 ,

𝛼𝑎 = 1
𝑚

𝑚

∑
𝑖=1

𝛼𝑖 + 𝜀1
𝑚 ,
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where 𝛼𝑖 = 𝛼(𝒙𝑖), and

Φ = (𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2) (𝒙𝑑 − 𝒙𝑐)
⊤ + (𝒙𝑑 − 𝒙𝑐) (𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2)

⊤ .

Proof. Note that 𝒙𝑐 = 1
𝑚

𝑚
∑
𝑖=1

𝒙𝑖. From the dynamical system (4-33), we obtain

𝒙̇𝑐 = 𝛼𝑎𝒗1 + 1
𝑚 (𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2) ,

where 𝛼𝑎 = 1
𝑚

𝑚
∑
𝑖=1

𝛼𝑖 + 𝜀1
𝑚 . Differentiating (4-30) with respect to time yields

̇𝑪 =
𝑚

∑
𝑖=1

(𝛼𝑖 − 𝛼𝑎) [𝒗1 (𝒙𝑖 − 𝒙𝑐)
⊤ + (𝒙𝑖 − 𝒙𝑐) 𝒗⊤

1 ]

− 𝛼𝑑 + 𝜀1
𝑚

𝑚

∑
𝑖=1

[𝜀𝜀𝜀2 (𝒙𝑖 − 𝒙𝑐)
⊤ + (𝒙𝑖 − 𝒙𝑐) 𝜀𝜀𝜀⊤

2 ]

+ (𝜀1𝒗1 + 𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2) (𝒙𝑑 − 𝒙𝑐)
⊤ + (𝒙𝑑 − 𝒙𝑐) (𝜀1𝒗1 + 𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2)

⊤

=
𝑚

∑
𝑖=1

(𝛼𝑖 − 𝛼𝑎) [𝒗1 (𝒙𝑖 − 𝒙𝑐)
⊤ + (𝒙𝑖 − 𝒙𝑐) 𝒗⊤

1 ]

+ (𝜀1𝒗1 + 𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2) (𝒙𝑑 − 𝒙𝑐)
⊤ + (𝒙𝑑 − 𝒙𝑐) (𝜀1𝒗1 + 𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2)

⊤ .
(4-36)

Moreover, using 𝑪𝒗1 = 𝜇1𝒗1, we have

̇𝑪𝒗1 + 𝑪 ̇𝒗1 = ̇𝜇1𝒗1 + 𝜇1 ̇𝒗1.

Hence
𝒗⊤

𝑗 ̇𝑪𝒗1 + 𝒗⊤
𝑗 𝑪 ̇𝒗1 = ̇𝜇1𝒗⊤

𝑗 𝒗1 + 𝜇1𝒗⊤
𝑗 ̇𝒗1, (4-37)

and the matrix ̇𝑪 is symmetric. This implies

𝒗⊤
𝑗 𝑪 ̇𝒗1 = (𝑪𝒗𝑗)

⊤ ̇𝒗1 = 𝜇𝑗𝒗⊤
𝑗 ̇𝒗1.

Since 𝒗⊤
𝑗 𝒗1 = 𝒗⊤

1 𝒗𝑗 = 0, from (4-37) we obtain

𝒗⊤
𝑗 ̇𝒗1 = 1

𝜇1 − 𝜇𝑗
𝒗⊤

𝑗 ̇𝑪𝒗1. (4-38)

Because the matrix 𝑪 is symmetric, we have

̇𝒗1 =
𝑛

∑
𝑗=2

𝒗⊤
𝑗 ̇𝒗1𝒗𝑗 . (4-39)

Substituting (4-36) into (4-38), and using (4-39) together with 𝒗⊤
𝑗 𝒗1(𝒙𝑖 − 𝒙𝑐)⊤𝒗1 = 0,

the lemma follows.
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Let 𝛼𝑐 = 𝛼(𝑓(𝒙𝑐)) and define the gradient ∇𝛼 = ∇𝛼(𝒙𝑐). We approximate 𝛼𝑖 =
𝛼(𝒙𝑖) by a Taylor expansion at the center 𝒙𝑐 , namely

𝛼𝑖 − 𝛼𝑐 = (𝒙𝑖 − 𝒙𝑐)
⊤ ∇𝛼 + 𝑟𝑖, (4-40)

where 𝛼𝑐 = 𝛼(𝒙𝑐) and 𝑟𝑖 = 𝒪 (‖𝒙𝑖 − 𝒙𝑐‖2
2). Suppose 𝑓𝑐 = 𝑓(𝒙𝑐). Let ∇𝑓 = ∇𝑓(𝒙𝑐)

denote the gradient of 𝑓 at the center 𝒙𝑐 . We obtain the following lemma.

Lemma 4.16. Based on (4-33) and the Taylor expansion, we have

̇𝒗1 =
𝑛

∑
𝑗=2

𝜇𝑗
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗 ∇𝛼 + 𝒓 +

𝑛

∑
𝑗=2

𝜀1
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗 (𝒙𝑑 − 𝒙𝑐)

+
𝑛

∑
𝑗=2

1
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗 (Φ𝒗1) ,

(4-41)

where

𝒓 =
⎛
⎜
⎜
⎝

𝑛

∑
𝑗=2

1
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗

⎞
⎟
⎟
⎠

[

𝑚

∑
𝑖=1

𝑟𝑖 (𝒙𝑖 − 𝒙𝑐)]
.

Proof. Let 𝑟𝑎 = 1
𝑚

𝑚
∑
𝑖=1

𝑟𝑖. The definition of 𝛼𝑎 together with (4-40) implies 𝛼𝑎 = 𝛼𝑐 +

𝑟𝑎 + 𝜀1
𝑚 . Hence, from (4-40) we obtain

𝑚

∑
𝑖=1

(𝛼𝑖 − 𝛼𝑎) (𝒙𝑖 − 𝒙𝑐) = 𝑪∇𝛼 +
𝑚

∑
𝑖=1

𝑟𝑖 (𝒙𝑖 − 𝒙𝑐) . (4-42)

Substituting (4-42) into (4-35) and using 𝒗⊤
𝑗 𝑪 = 𝜇𝑗𝒗⊤

𝑗 , we obtain (4-41).

We next present the following lemma, where we continue to use ∇𝑓 to denote
∇𝑓(𝒙𝑐).

Lemma 4.17. According to (4-33) and the exponential step size, the dynamical system
is

⎧⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

̇𝑓𝑐 =
{

𝜀1
𝑚 + 𝛽

𝑚

𝑚

∑
𝑖=1

[1 − exp( ̄𝑓 − 𝑓(𝒙𝑖(𝑡))]}
(∇𝑓)⊤𝒗1

+ {
𝛽
𝑚 [1 − exp ( ̄𝑓 − 𝑓(𝒙𝑑))] + 𝜀1

𝑚 } (∇𝑓)⊤𝜀𝜀𝜀2,

̇𝒗1 = 𝛽 exp ( ̄𝑓 − 𝑓𝑐)
𝑛

∑
𝑗=2

𝜇𝑗
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗 ∇𝑓 + 𝒓 +

𝑛

∑
𝑗=2

𝜀1
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗 (𝒙𝑑 − 𝒙𝑐)

+
𝑛

∑
𝑗=2

1
𝜇1 − 𝜇𝑗

𝒗𝑗𝒗⊤
𝑗 (Φ𝒗1) .

(4-43)
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Proof. From the calculations, we have

𝒙̇𝑐 = 1
𝑚

𝑚

∑
𝑖=1

𝛼𝑖𝒗1 + 1
𝑚 (𝛼𝑑𝜀𝜀𝜀2 + 𝜀1𝜀𝜀𝜀2 + 𝜀1𝒗1)

=
{

𝜀1
𝑚 + 𝛽

𝑚

𝑚

∑
𝑖=1

[1 − exp ( ̄𝑓 − 𝑓(𝒙𝑖))]}
𝒗1

+ {
𝛽
𝑚 [1 − exp ( ̄𝑓 − 𝑓(𝒙𝑑))] + 𝜀1

𝑚 } 𝜀𝜀𝜀2.

Substituting the above into ̇𝑓 (𝒙𝑐) = (∇𝑓(𝒙𝑐))
⊤ 𝒙̇𝑐 , we obtain the first equation in (4-

43). Moreover, we have

∇𝛼(𝒙𝑐) = 𝑑𝛼
𝑑𝑓 ∇𝑓(𝒙𝑐) = 𝛽 exp ( ̄𝑓 − 𝑓(𝒙𝑐)) ∇𝑓(𝒙𝑐).

Hence, by substituting ∇𝛼(𝒙𝑐) into (4-41), we obtain the second equation in (4-43).

The above establishes the dynamical system associated with our algorithm. We now
analyze the stability of the SUSD-TR direction.

We first recall basic definitions from control and dynamical systems theory—stabil-
ity, asymptotic stability, and input-to-state stability (ISS) [210]—which will be used in
our stability analysis.

Definition 4.18 (Stability). If for any ̄𝜀 > 0, there exists ̄𝛿(𝑡, ̄𝜀) such that when |𝜂(𝑡0)| <
̄𝛿, one has |𝜂(𝑡)| < ̄𝜀 for all 𝑡 > 𝑡0, then 𝜂 is said to be stable.

Definition 4.19 (Asymptotic stability). If there exists ̄𝛿(𝑡0) such that |𝜂(𝑡0)| < ̄𝛿 implies
lim
𝑡→∞

𝜂(𝑡) = 0, then 𝜂 is said to be asymptotically stable.

Definition 4.20 (𝒦-class function). A scalar continuous function 𝑔1(𝑟) defined on 𝑟 ∈
[0, 𝑎) is said to be of class 𝒦 if it is strictly increasing and satisfies 𝑔1(0) = 0.

Definition 4.21 (𝒦ℒ-class function). A scalar continuous function 𝑔2(𝑟, 𝑠) defined on
𝑟 ∈ [0, 𝑎) and 𝑠 ∈ [0, ∞) is said to be of class 𝒦ℒ if, for each fixed 𝑠, the mapping
𝑔2(𝑟, 𝑠) in 𝑟 is of class 𝒦, and for each fixed 𝑟, the mapping 𝑔2(𝑟, 𝑠) in 𝑠 is decreasing
with 𝑔2(𝑟, 𝑠) → 0 as 𝑠 → ∞.

Definition 4.22 (Input-to-state stability). If there exist a 𝒦ℒ-class function 𝑓1 and a
𝒦-class function 𝑓2 such that, for any initial state 𝜂(𝑡0) ∈ [0, 2) and any bounded input
𝛿(𝑡) with |𝛿(𝑡)| ≤ 𝑈 , the solution 𝜂(𝑡) of the system ̇𝜂 = 𝜓(𝑡, 𝜂, 𝛿) is defined for all 𝑡 > 𝑡0
and satisfies

|𝜂(𝑡)| ≤ 𝑓1 (|𝜂(𝑡0)| , 𝑡 − 𝑡0) + 𝑓2 sup
𝑡0≤𝜏≤𝑡

|𝛿(𝜏)| ,

then the system is input-to-state stable with respect to the equilibrium 𝜂∗ = 0, the neigh-
borhood 𝜂 ∈ [0, 2), and the input bound 𝑈 .
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The following theorem will be used to establish the input-to-state stability property
relevant to our algorithm.

Theorem 4.23 (Theorem 4.19 in Khalil [210]). Let 𝒱(𝑡, 𝜂) ∶ [0, ∞) × [0, 2) → ℜ be
a continuously differentiable function. Let 𝛼1(𝜂), 𝛼2(𝜂) be 𝒦-class functions on [0, 2),
𝜌(|𝛿|) a 𝒦-class function on [0, 𝑈], and 𝛼3(𝜂) a continuous positive function on [0, 2).
Suppose that for all (𝑡, 𝜂, 𝛿) ∈ [0, ∞) × [0, 2) × [−𝑈, 𝑈], 𝒱 satisfies

𝛼1(|𝜂|) ≤ 𝒱(𝑡, 𝜂) ≤ 𝛼2(|𝜂|)

and, whenever |𝜂| ≥ 𝜌(|𝛿|) > 0,
𝜕𝒱
𝜕𝑡 + 𝜕𝒱

𝜕𝜂 𝜓 (𝑡, 𝜂, 𝛿) ≤ −𝛼3 (𝜂) .

Then the system ̇𝜂 = 𝜓(𝑡, 𝜂, 𝛿) is input-to-state stable.

Note that, for simplicity, the symbols in the above definitions and theorem are in-
dependent of what follows. Let 𝒈 = ∇𝑓/‖∇𝑓‖2. We now show that the SUSD-TR
direction 𝒗1 tends to −𝒈 under certain conditions. Define 𝜂 = 1 + 𝒗⊤

1 𝒈, where 𝜂 = 0 if
and only if 𝒗1 = −𝒈. We can then derive the following result for 𝜂.

Corollary 4.24. Based on (4-33) and the exponential-type step size, we obtain the dy-
namical system for the search iteration

̇𝜂 = 𝛽exp ( ̄𝑓 − 𝑓𝑐) ‖∇𝑓‖2

𝑛

∑
𝑗=2

𝜇𝑗
𝜇1 − 𝜇𝑗

(𝒈⊤𝒗𝑗)
2 + 𝛿 ∶= 𝜓(𝑡, 𝜂, 𝛿), (4-44)

where

𝛿 = 𝒓⊤𝒈 + 𝒈⊤
⎛
⎜
⎜
⎝

𝑛

∑
𝑗=2

𝒗𝑗𝒗⊤
𝑗

𝜇1 − 𝜇𝑗

⎞
⎟
⎟
⎠

[𝜀1 (𝒙𝑑 − 𝒙𝑐) + Φ𝒗1] + 𝒗⊤
1 ̇𝒈.

Proof. By computing ̇𝒗⊤
1 𝒈, (4-44) follows directly from (4-43).

The parameter 𝛿 represents the external disturbance to 𝜂 caused by the nonlinearity
of the function (which cannot be controlled by the search points), and it includes higher-
order terms. Note that when 𝜀1 = 0 and 𝜀𝜀𝜀2 = 0, we have 𝛿 = 𝒓⊤𝒈 + 𝒗⊤

1 ̇𝒈, which
corresponds exactly to the SUSD algorithm, i.e., the method that advances solely along
the SUSD direction without the trust-region iteration step in SUSD-TR.

The following result provides further details on when and how 𝒗1 tends to −𝒈.

Theorem 4.25. Assume that ‖∇𝑓(𝒙𝑐)‖2 > 𝜉, where 𝜉 is a positive constant. Then,
for (4-44), the system ̇𝜂 = 𝜓(𝑡, 𝜂, 0) is asymptotically stable at the equilibrium 𝜂 = 0,
i.e., when 𝜂(0) ∈ [0, 2), one has 𝜂(𝑡) → 0 as 𝑡 → ∞, where 𝑡 denotes the continuous
iteration (time). Moreover, for disturbances satisfying |𝛿| < 𝛽exp( ̄𝑓 − 𝑓𝑐)𝑀 𝜇1

𝜇𝑛−𝜇1
𝜉

with 𝑀 ∈ (0, 1), the system 𝜓(𝑡, 𝜂, 𝛿) is locally input-to-state stable at the equilibrium
𝜂 = 0.
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Proof. The proof is identical to that of Theorem 1 in the work of Al-Abri et al. [117],
and is therefore omitted here.

4.2.4 Trial Step and Structure Step

In this subsection, we present more details of the trial step and the structure step con-
tained in the trust-region step, which are part of the implementation of Algorithm 12.

The trial step can be viewed as a small-scale correction within SUSD-TR. In this
step, the algorithm obtains a new point by solving an interpolation-model subproblem
inside the trust region, namely

min
𝒙

𝐿𝑘(𝒙) or 𝑄𝑘(𝒙)

s. t. ‖𝒙 − 𝒙(𝑘)
𝑐 ‖2

≤ Δ𝑘,

and replaces the point with the largest function value among the current iteration points.
In the theoretical analysis, the direction 𝒗1 may fail to converge or may even become

unstable. In such cases, we say that 𝒗1 fails. The following proposition illustrates the
advantage of introducing the trial step in the SUSD-TR algorithm when 𝒗1 turns toward
the gradient ascent direction 𝒈.

Proposition 4.26. Suppose that, at a given iteration, the 𝑚 search points satisfy the
dynamical system

{
𝒙̇𝑖 = 𝒈, 𝑖 = 1, ⋯ , 𝑑 − 1, 𝑑 + 1, ⋯ , 𝑚,
𝒙̇𝑑 = −𝛼̄𝑑𝒈,

(4-45)

with 𝛼̄𝑑 > 𝑚 − 1. Then the center point moves along the gradient descent direction.

Proof. From (4-45), the dynamical system for 𝒙𝑐 is

𝒙̇𝑐 = 𝑚 − 1 − 𝛼̄𝑑
𝑚 𝒈,

from which the conclusion follows directly.

The above analysis shows that the trial step can pull the center of the search points
from the gradient ascent direction back toward the gradient descent direction.

In the current implementation of the algorithm, the well-poisedness of the interpola-
tion set is checked and improved before using the model. This is achieved by calling the
model improvement step, which takes into account the positions and distribution of the
iteration/interpolation/search points in order to obtain a well-conditioned interpolation
model. For more general discussions, see the work of Conn, Scheinberg, and Vicente
[95].

148



Chapter 4 Subspace Methods and Parallel Methods

22

33

44

55

66

66
77

-1 0 1 2 3 4 5

-8

-7

-6

-5

-4

-3

x
y

f (x, y)

Figure 4-8 The “antidromic” point leading to a gradient descent direction
The “antidromic” point leading a gradient descent direction

In addition to the trial step discussed above, we also design a structure improvement
step. Its motivation is to enlarge the region of attraction for local input-to-state stability
[210], thereby making the search direction more likely to converge stably toward the
gradient descent direction. Indeed, in Theorem 4.25, one of the assumptions requires
that the norm of the gradient at the center point should be greater than 𝜉. It should be
noted that, in Theorem 4.25, there exists a lower bound for 𝜉.

‖∇𝑓(𝒙𝑐)‖2 ≤ 𝜉

‖∇𝑓(𝒙𝑐)‖2 ≤ 𝜉

Attraction region

Figure 4-9 Attraction region (𝜉 > |𝛿|(𝜇𝑛−𝜇1)
𝛽exp( ̄𝑓−𝑓𝑐 )𝑀𝜇1

)

Remark 4.5. Figure 4-9 illustrates, via the shaded region, the attraction region of local
input-to-state stable equilibrium in Theorem 4.25 (𝜇1 ≠ 0).

It can be observed that when the condition number of matrix 𝑪 is small, the lower
bound above decreases. In the algorithm implementation, we heuristically try to reduce
the largest eigenvalue so that the eigenvalues become closer to each other. This heuristic
step yields good numerical performance, although it does not strictly guarantee that the
covariance matrix is well-conditioned.

For the covariance matrix 𝑪 , a radially distributed set of search points can make 𝜇1
and 𝜇𝑛 closer to each other. This typically occurs when the interpolation set is well-
poised, which is considered in the model improvement step. Moreover, suppose that
𝒗 ∈ ℜ𝑛 is a nonzero eigenvector of 𝑪 corresponding to the largest eigenvalue 𝜇𝑛. Then
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we have
𝜇𝑛 = max

‖𝒗‖2=1
𝒗⊤𝑪𝒗

= max
‖𝒗‖2=1

𝒗⊤
[

𝑚

∑
𝑖=1

(𝒙𝑖 − 𝒙𝑐) (𝒙𝑖 − 𝒙𝑐)
⊤

]
𝒗

= max
‖𝒗‖2=1

𝑚

∑
𝑖=1

[(𝒙𝑖 − 𝒙𝑐)
⊤ 𝒗]

2
.

Hence, we obtain the following upper and lower bounds:
𝑚

∑
𝑖=1

‖𝒙𝑖 − 𝒙𝑐‖
2
2 ≥ max

‖𝒗‖2=1

𝑚

∑
𝑖=1

[(𝒙𝑖 − 𝒙𝑐)
⊤ 𝒗]

2
≥ max

𝑖 ‖𝒙𝑖 − 𝒙𝑐‖
2
2 .

Meanwhile, Algorithm 13 can reduce both the upper and lower bounds of the largest
eigenvalue of the covariance matrix 𝑪 . For simplicity, the iteration index 𝑘 has been
omitted here.

Algorithm 13 Structure step

1: Discard the farthest point in the search set 𝒙far ∶= arg max
𝒙𝑖

‖𝒙𝑖 − 𝒙𝑐‖
2
2.

2: Add a new point to the search set 𝒙new = 1
𝑚−1 ∑

𝑖≠far
𝒙𝑖 (replace 𝒙far).

The above discussion presented the trial step and structure step in the SUSD-TR
algorithm.

4.2.5 Numerical Results

This section reports numerical results, including solving two test problems and compar-
ing the performance of SUSD-TR with other derivative-free optimization algorithms on
a test problem set.

Example 4.1. We implemented MATLAB codes of the corresponding methods to min-
imize the 2-dimensional Rosenbrock function

𝑓(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100 (𝑥2 − 𝑥2

1)
2 , (4-46)

and the function
𝑓(𝑥1, 𝑥2) = (1 − 𝑥1)

2 + (𝑥2 − 𝑥2
1)

2 , (4-47)

to test and compare the SUSD algorithm [117] (executing only the line search step of
SUSD-TR) and our SUSD-TR algorithm, where (𝑥1, 𝑥2)⊤ denotes 𝒙 ∈ ℜ2. Figure 4-10
shows the iteration trajectories of SUSD and SUSD-TR for solving the two problems.
Hollow circles indicate the center points in the iteration process. We observe that the
SUSD algorithm exhibits instability in the search direction, with 𝒗1 failing to converge

150



Chapter 4 Subspace Methods and Parallel Methods

and eventually missing the minimizer (1, 1)⊤. In contrast, applying SUSD-TR success-
fully converges to the minimizer.

For these experiments, the algorithm parameters were set as 𝜅 = 1.2, Δ𝑘 = 5, 𝛽 = 1,
and the five initial search points were

𝒙(0)
1 =

(
20
0 )

, 𝒙(0)
2 =

(
23
4 )

, 𝒙(0)
3 =

(
23
−4)

, 𝒙(0)
4 =

(
17
4 )

, 𝒙(0)
5 =

(
17
−4)

.

Themodel function in SUSD-TRwas an underdetermined quadratic interpolationmodel.
In summary, when solving these examples, the SUSD algorithm sometimes fails to

converge, with search points moving along gradient ascent directions. However, SUSD-
TR effectively converges to the minimizer, with search points mostly moving along the
descent direction of function values, requiring less than half the function evaluations
compared with SUSD. One reason is that, in each iteration, there always exists a point
moving along the descent direction of the quadratic interpolationmodel; when themodel
is accurate (at least fully linear), this direction is close to the gradient descent direction
of the objective function.

Table 4-4 Test problems for Figure 4-11 and Figure 4-12

ARGLINA ARGLINA4 ARGLINB ARGLINC ARGTRIG
ARWHEAD BDQRTIC BDQRTICP BDVALUE BROWNAL
BROYDN3D BROYDN7D BRYBND CHAINWOO CHEBQUAD
CHNROSNBZ CHPOWELLB CHPOWELLS CHROSEN COSINE
CUBE CURLY10 CURLY20 CURLY30 DIXMAANE
DIXMAANF DIXMAANG DIXMAANH DIXMAANI DIXMAANJ
DIXMAANK DIXMAANL DIXMAANM DIXMAANN DIXMAANO
DIXMAANP DQRTIC EDENSCH ENGVAL1 ERRINROS
EXPSUM EXTROSNB EXTTET FIROSE FLETCBV2
FLETCBV3 FLETCHCR FMINSRF2 FREUROTH GENBROWN
GENHUMPS GENROSE INDEF INTEGREQ LIARWHD
LILIFUN3 LILIFUN4 MOREBV MOREBVL NCB20
NCB20B NONCVXU2 NONCVXUN NONDIA NONDQUAR
PENALTY1 PENALTY2 PENALTY3 PENALTY3P POWELLSG
POWER ROSENBROCK SBRYBND SBRYBNDL SCHMVETT
SCOSINE SCOSINEL SEROSE SINQUAD SPARSINE
SPARSQUR SPHRPTS SPMSRTLS SROSENBR STMOD
TOINTGSS TOINTTRIG TQUARTIC TRIGSABS -

Solving the above classical examples demonstrates the advantages of our algorithm.
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(a) Minimizing (4-46) using SUSD

(b) Minimizing (4-47) using SUSD
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(c) Minimizing (4-46) using SUSD-TR
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(d) Minimizing (4-47) using SUSD-TR

Figure 4-10 Solving the 2-dimensional test problems by SUSD and SUSD-TR
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To further compare performance, we tested our algorithm against the derivative-free op-
timization algorithm based on the SUSD direction [117], as well as the representative
Nelder-Mead method [51] and NEWUOA [94]. The test problems listed in Table 4-4
range in dimension from 2 to 120 and are taken from classical unconstrained optimiza-
tion test function sets [177, 178, 180, 181, 185, 186]. The corresponding numerical
results are shown in Figures 4-11 and 4-12.
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Figure 4-11 Performance Profile for solving the test problems

Our algorithm starts from 𝑚 = 2𝑛+1 randomly selected initial points, with parame-
ters set as 𝛽 = 1, 𝑃 = 5, 𝜀 = 10−6, 𝜅 = 1.2, and accuracy levels 𝜏 = 10−1, 10−3, 10−5.
From Figures 4-11 and 4-12, we can observe that, for the tested problems, the SUSD-TR
algorithm is more effective than the Nelder-Mead method at certain accuracy levels and
can achieve performance comparable to the NEWUOA algorithm, efficiently solving
these test problems. Its numerical performance is clearly superior to the method based
solely on the SUSD direction (i.e., the pure line-search type). Other algorithms were
run with their respective default parameters of the same scale.
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Figure 4-12 Data Profile for solving the test problems

In addition, both the SUSD-TR and SUSD algorithms can handle problems with
high function evaluation costs in a parallelizable way, which is a key advantage over
other methods (since in the line-search step, 𝑚 points can be evaluated simultaneously).

Based on the above numerical tests, we conclude that compared with using the
SUSD direction alone, our algorithm successfully improves problem-solving perfor-
mance by combining the SUSD direction with trust-region techniques.

4.2.6 Conclusion

In this section, we proposed the SUSD-TR algorithm, which combines the process of
solving a trust-region subproblem of the interpolation model function with the process
of propagating points along the SUSD direction. We presented the dynamical system
corresponding to the SUSD-TR algorithm and analyzed the stability of its parallel search
direction. Numerical results demonstrated the advantages of our SUSD-TR method. In
future work, we will consider more effective step-size strategies, better ways of combin-
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ing steps, and different SUSD directions. Moreover, extending the approach to small-
scale modifications of multiple points and to solving constrained problems will be im-
portant future research directions.
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Chapter 5 Conclusion and Future Work

Many optimization problems arising from science, engineering, artificial intelligence,
and machine learning involve situations where derivatives are unavailable or unreli-
able. In such problems, the objective function can only be treated as a black-box output,
without providing derivative information. To address such cases, derivative-free opti-
mization (DFO) methods are required. DFO is one of the most important, open, and
challenging areas in computational science and engineering, with enormous practical
potential. The goal of designing DFO methods is to achieve optimization using as few
function evaluations as possible. We know that trust-region methods are a celebrated
class of algorithms in nonlinear optimization. Trust-region algorithms generate new
iterates by minimizing a quadratic model within a region close to the current point. In
the derivative-free case, the corresponding models are usually constructed by polyno-
mial interpolation, regression, or other approximation techniques. Such optimization
methods are referred to as model-based DFO methods. Chapters 2 through 4 of this
dissertation study unconstrained DFO problems.

Chapter 2 investigates how to design better approximation models and discusses in
depth the relationship between approximation and optimization. Among the most effec-
tive model-based DFO methods are trust-region algorithms based on underdetermined
quadratic interpolation models. During iterations, using different techniques to update
the quadratic model produces different interpolation models. The least norm quadratic
models proposed by Powell, Conn, and Toint [171, 211] have been internationally lead-
ing models over the last two decades. This dissertation improves upon these models in
the following two ways.

First, we propose to construct a quadratic model function by minimizing the 𝐻2

norm of the change between the new quadratic model and the old one, thereby reduc-
ing the lower bound on the number of interpolation points or equations. This method
has corresponding projection properties and error bounds, and we provide an easily
implementable model updating formula. Furthermore, by giving the barycenter of the
weights in the least weighted 𝐻2 norm update of quadratic models, we identify the
optimal weight coefficients, accompanied by theoretical analysis and numerical results.

Second, recognizing that trust-region steps can provide information on model opti-
mality in model-based DFO methods, we propose a new perspective to understand and
analyze the Conn–Toint model, and introduce a new, easily implementable model. The
article also discusses theoretical motivations for using such a model. To the best of our
knowledge, this is the first work to construct underdetermined quadratic interpolation
models for DFO by explicitly considering the nature of trust-region iterations.
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Future work includes further exploration of the relationship between approximation
and optimization. The work in this dissertation has already revealed the importance of
approximation for optimization. Building upon the discussion of least 𝐻2 norm updated
quadratic models and function optimality, more DFO algorithms can be developed,
particularly algorithms with stronger convergence guarantees. For example, adaptive
weight coefficients in the least 𝐻2 norm update for problems with different structures
could be designed. In addition, comparisons of weight coefficients in the least weighted
𝐻2 norm models from other perspectives may be explored. Further details and work
are also needed: for instance, can we construct better models incorporating model opti-
mality using only “function value comparison” mechanisms (instead of exact function
value evaluation)? In fact, this dissertation’s exploration of “optimization and approx-
imation” aims to foster integration of these important disciplines. Notably, our latest
findings indicate that DFO lies at the intersection of approximation and optimization.
“Optimization for approximation” and “approximation for optimization” represent two
promising avenues of research with great potential in both mathematical theory and
practical applications. Another future direction is determining better choices for the
number of interpolation points at each iteration.

Chapter 3 discusses DFO with transformed objective functions. We propose a DFO
method for solving optimization problems with transformed objectives and provide a
corresponding probing scheme. For strictly convex models with unique minimizers
in the trust region, we prove the existence of model-optimality-preserving transforma-
tions beyond translations, and we give a necessary and sufficient condition for trans-
formed function values corresponding to model-optimality-preserving transformations.
We derive the corresponding quadratic model for affine transformations of the objec-
tive function and prove that some monotone positive transformations (even affine ones
with positive multiplicative coefficients) are not model-optimality-preserving. We also
conduct interpolation error analysis, provide the case for affine transformations, and
present convergence analysis for first-order critical points. Numerical results for test
and practical problems are given. As discussed in Chapter 3, there is still much to study
regarding transformed-objective DFO. For example, one could attempt to applyminimal
Frobenius norm quadratic model updates to practical transformed DFO problems (e.g.,
black-box optimization with noise-injection or privacy-preserving mechanisms). Fur-
thermore, convergence analysis under weaker assumptions for transformed-objective
problems remains an open and challenging problem. The open question of minimiz-
ing “moving-target” objectives without derivatives, as raised in this dissertation, is also
interesting and challenging. We believe that transformed DFO has begun to show poten-
tial impacts in both theory and applications. In fact, it characterizes noisy optimization
problems from a new perspective and derives new theoretical results. Thus, further
theoretical analysis and algorithm design for such problems are valuable. Moreover,
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transformed DFO is closely related to noisy black-box problems and machine learning
tasks, making relevant AI applications worthy of attention.

Chapter 4 consists of two parts. The first part discusses subspace methods for solv-
ing large-scale DFO problems, and the second explores parallel DFO algorithms com-
bining line-search and trust-region frameworks. In current DFO problems, large-scale
problems remain a bottleneck, since when the problem dimension is high, the cost of
constructing local polynomial models and interpolation errors can be prohibitive. We
consider this the curse of dimensionality in DFO. To address this challenge, we pro-
pose a new subspace optimization method for solving large-scale black-box problems,
which uses subspace techniques and quadratic models to efficiently search for minimiz-
ers. Our new method, 2D-MoSub, iteratively employs two-dimensional quadratic mod-
els in two-dimensional subspaces to find new points and perform updates, and it enjoys
favorable approximation error and convergence properties. Future work includes solv-
ing even larger-scale problems (with or without derivatives). In addition, we plan to
explore more techniques, including subspace methods, parallelization, and randomiza-
tion, to handle large-scale problems. We also intend to design new subspace selection
strategies and study large-scale constrained problems. In practice, solving large-scale
problems is critical in many applications, including machine learning and other practi-
cal needs. We find that 2D-MoSub holds promise for solving large-scale problems of
significant importance in optimization and numerical computation. Moreover, we will
consider using high-performance computing for large-scale analysis and optimization
and further explore randomized subspace methods.

In the second part of Chapter 4, we introduce a parallel method, SUSD-TR, that en-
hances line search using quadratic models. This method combines the SUSD direction,
derived from the covariance matrix of interpolation points, with the solution of the trust-
region subproblem for quadratic models at each iteration. We analyze the dynamical
system of the SUSD-TR algorithm and the properties of its iterative search direction.
Numerical results demonstrate the efficiency of this algorithm. Future work includes
further study of parallelization methods, improved step-size strategies, better combina-
tions of the two frameworks, and exploration of different SUSD directions. Moreover,
we plan to investigate simultaneous small-scale corrections on multiple points and ex-
tend the method to constrained optimization problems. In fact, SUSD-TR can be re-
garded as a parallel and derivative-free version of the combination of line-search and
trust-region frameworks. It seeks to leverage and combine the strengths of these two
classical iterative optimization frameworks. Going forward, we will continue to study
the comparison and combination of model-based DFOmethods and direct search meth-
ods, as well as explore more specific applications, such as distributed source localization
scenarios.
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